The range of a function is the set of all possible output values (y-values) that the function can produce. For the sine function, \(y = a \, \sin \, b(x-c)\), without any vertical displacement (\(d = 0\)), the range depends on the amplitude and is bound between the negative and positive values of the amplitude. For example:
- If the amplitude \(a\) is 3, then the range is \{-3 \, \leq \, y \, \leq \, 3, \, y \, \in \, \mathbb{R}\}\>.
When we introduce a vertical displacement \(d\), the entire range is shifted up or down by \(d\) units. For example:
- If \(d = 2\), the range will shift up by 2: \{-3 + 2 \leq y \leq 3 + 2\} or \{-1 \, \leq \, y \, \leq \, 5\}\.
- If \(d = -3\), the range will shift down by 3: \{-3 - 3 \leq y \leq 3 - 3\} or \{-6 \, \leq \, y \, \leq 0\}\.
- If \(d = -10\), the range will shift down by 10: \{-3 - 10 \leq y \leq 3 - 10\} or \{-13 \, \leq \, y \, \leq -7\}\.
- If \(d = 8\), the range will shift up by 8: \{-3 + 8 \leq y \leq 3 + 8\} or \{5 \, \leq \, y \, \leq 11\}\.
Therefore, understanding vertical displacement is crucial for determining the new range of a function.