Chapter 4: Problem 19
A beach ball is riding the waves near Tofino, British Columbia. The ball goes up and down with the waves according to the formula \(h=1.4 \sin \left(\frac{\pi t}{3}\right),\) where \(h\) is the height, in metres, above sea level, and \(t\) is the time, in seconds. a) In the first \(10 \mathrm{s},\) when is the ball at sea level? b) When does the ball reach its greatest height above sea level? Give the first time this occurs and then write an expression for every time the maximum occurs. c) According to the formula, what is the most the ball goes below sea level?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.