Chapter 11: Problem 25
The real number \(e\) is the base of natural logarithms. It appears in certain mathematics problems involving growth or decay and is part of Stirling's formula for approximating factorials. One way to calculate \(e\) is shown below. \(e=\frac{1}{0 !}+\frac{1}{1 !}+\frac{1}{2 !}+\frac{1}{3 !}+\frac{1}{4 !}+\cdots\) a) Determine the approximate value of \(e\) using the first five terms of the series shown. b) How does the approximate value of \(e\) change if you use seven terms? eight terms? What do you conclude? c) What is the value of \(e\) on your calculator? d) Stirling's approximation can be expressed as \(n ! \approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\) Use Stirling's approximation to estimate \(15 !,\) and compare this result with the true value. e) A more accurate approximation uses the following variation of Stirling's formula: \(n ! \approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\left(1+\frac{1}{12 n}\right)\) Use the formula from part d) and the variation to compare estimates for \(50 !.\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.