Chapter 37: Problem 811
If \(\mathrm{y}=\sinh \mathrm{x}=(1 / 2)\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-x}\right)\), the inverse function is written \(\mathrm{x}=\sinh ^{-1} \mathrm{y}\) - similar notations are employed for the inverse of the remaining hyperbolic functions. show that: (a) \(\sinh ^{-1} \mathrm{y}=\operatorname{In}\left\\{\mathrm{y}+\sqrt{ \left.\left(1+y^{2}\right)\right\\}}\right.\) (b) \(\cosh ^{-1} y=\pm \operatorname{In}\left\\{y+v\left(y^{2}-1\right)\right\\}\) (c) \(\tanh ^{-1} \mathrm{y}=(1 / 2) \operatorname{In}[(1+\mathrm{y}) /(1-\mathrm{y})]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.