A simple \(R C\)-circuit with emf \(V(t)=3 \cos (\omega t)\) is modeled by the
initial value problem
$$
R C V_{C}^{\prime}+V_{C}=3 \cos (\omega t), \quad V_{C}(0)=0,
$$
where \(R\) is the resistance, \(C\) the capacitance, \(\omega\) is the driving
frequency, and \(V_{C}\) is the voltage response across the capacitor. Show that
the solution is
$$
V_{C}(t)=\frac{R C \omega \sin \omega t+\cos \omega t-e^{-t /(R C)}}{1+R^{2}
C^{2} \omega^{2}}
$$
Create a function M-file for this solution as follows.
function \(V=f(t, R, C\), w \()\)
\(V=(R * C * w * \sin (w * t)+\cos (w * t)-\exp (-t /(R * C)))
/\left(1+R^{\wedge} 2 * C^{\wedge} 2 * w^{\wedge} 2\right) ;\)
Now, call this function with the following script.
\(\mathrm{R}=1.2 ; \mathrm{C}=1 ; \mathrm{w}=1 ;\)
\(t=\) linspace \((0,2 *\) pi, 1000\() ;\)
\(\mathrm{R}=1.2 ; \mathrm{C}=1 ; \mathrm{w}=1 ;\)
\(\mathrm{t}=1\) inspace \((0,2 * \mathrm{pi}, 1000) ;\)
\(\mathrm{V}=\mathrm{f}(\mathrm{t}, \mathrm{R}, \mathrm{C}, \mathrm{w}) ;\)
\(\mathrm{plot}(\mathrm{t}, \mathrm{V})\)
\(\mathrm{V}=\mathrm{f}(\mathrm{t}, \mathrm{R}, \mathrm{C}, \mathrm{w})\);
plot (t,V)
Run this script for \(\omega=1,2,4\), and 8 , keeping \(R=1.2 \mathrm{ohms}\) and
\(C=1\) farad constant. What happens to the amplitude of the voltage response
across the capacitor as the frequency of the emf is increased? Why do you
think this circuit is called a low pass filter?