Chapter 5: Problem 20
Let \(|G(t)|
Chapter 5: Problem 20
Let \(|G(t)|
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general solution of each of the following systems by the method of eigenvalues. (a) \(y_{1}^{\prime}=6 y_{1}-7 y_{2}\), \(y_{2}^{\prime}=y_{1}-2 y_{2}\) (b) \(\quad y_{1}^{\prime}=y_{1}+y_{2}-2 y_{3}\), \(y_{2}^{\prime}=-y_{1}+2 y_{2}+y_{3}\) \(y_{3}^{\prime}=y_{2}-y_{3}\) (c) \(y_{1}^{\prime}=2 y_{1}+y_{3}\) \(y_{2}^{\prime}=y_{2}\) $y_{3}^{\prime}=y_{1}+2 y_{3} .$$$ \begin{array}{l} \text { (d) } y_{1}^{\prime}=2 y_{1}-y_{2} \text { , }\\\ y_{2}^{\prime}=2 y_{1}+4 y_{2} .\\\ \begin{array}{ll} \text { (e) } & y_{1}^{\prime}=y_{1}-y_{2}, \\ & y_{2}^{\prime}=5 y_{1}-3 y_{2} . \\ \text { (f) } & y_{1}^{\prime}=3 y_{1}+y_{2}-y_{3}, \\ & y_{2}^{\prime}=y_{1}+3 y_{2}-y_{3}, \\ & y_{3}^{\prime}=3 y_{1}+3 y_{2}-y_{3} . \\ \text { (g) } & y_{1}^{\prime}=y_{3}, \\ & y_{2}^{\prime}=y_{1}-3 y_{3}, \\ & y_{3}^{\prime}=y_{2}+3 y_{3} . \end{array} \end{array} $$
The system of equations $$ \begin{array}{l} y_{1}^{\prime}=y_{1}+\varepsilon y_{2} \\ y_{2}^{\prime}=\varepsilon y_{1}+y_{2} \end{array} $$
Verify that $$ \Phi(t)=E \Psi^{-1}\left(t_{0}\right) \Psi(t)+\Psi(t) \int_{t_{0}}^{t} \Psi^{-1}(\tau) G(\tau) d \tau $$ is the solution of the system $$ \begin{aligned} Y^{\prime} &=A(t) Y+G(t), \\ Y\left(t_{0}\right) &=E \end{aligned} $$
Discuss the existence and uniqueness of the solution of the following initial- value problems \(\begin{array}{ll}\text { (a) } & y_{1}^{\prime}=y_{1}+e^{t} y_{2}, \\ & y_{2}^{\prime}=(\sin t) y_{1}+t^{2} y_{2}, \\ & y_{1}(0)=1, \quad y_{2}(0)=0 . \\ \text { (b) } & y_{1}^{\prime}=y_{1}+t y_{2}+e^{t} y_{3}, \\\ y_{2}^{\prime}=y_{2}-t^{2} y_{3}, & \\ y_{3}^{\prime}=t y_{1}-y_{2}+y_{3} . & \\\ y_{1}(0)=1, y_{2}(0)=0, y_{3}(0)=0 .\end{array}\)
Write the equation $$ y^{\prime \prime}+p y^{\prime}+q y=0, $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.