Find the general solution of each of the following systems by the method of
eigenvalues.
(a) \(y_{1}^{\prime}=6 y_{1}-7 y_{2}\),
\(y_{2}^{\prime}=y_{1}-2 y_{2}\)
(b) \(\quad y_{1}^{\prime}=y_{1}+y_{2}-2 y_{3}\),
\(y_{2}^{\prime}=-y_{1}+2 y_{2}+y_{3}\)
\(y_{3}^{\prime}=y_{2}-y_{3}\)
(c) \(y_{1}^{\prime}=2 y_{1}+y_{3}\)
\(y_{2}^{\prime}=y_{2}\)
$y_{3}^{\prime}=y_{1}+2 y_{3} .$$$
\begin{array}{l}
\text { (d) } y_{1}^{\prime}=2 y_{1}-y_{2} \text { , }\\\
y_{2}^{\prime}=2 y_{1}+4 y_{2} .\\\
\begin{array}{ll}
\text { (e) } & y_{1}^{\prime}=y_{1}-y_{2}, \\
& y_{2}^{\prime}=5 y_{1}-3 y_{2} . \\
\text { (f) } & y_{1}^{\prime}=3 y_{1}+y_{2}-y_{3}, \\
& y_{2}^{\prime}=y_{1}+3 y_{2}-y_{3}, \\
& y_{3}^{\prime}=3 y_{1}+3 y_{2}-y_{3} . \\
\text { (g) } & y_{1}^{\prime}=y_{3}, \\
& y_{2}^{\prime}=y_{1}-3 y_{3}, \\
& y_{3}^{\prime}=y_{2}+3 y_{3} .
\end{array}
\end{array}
$$