Chapter 5: Problem 12
Find the general solution of each of the following systems by the method of eigenvalues. (a) \(y_{1}^{\prime}=6 y_{1}-7 y_{2}\), \(y_{2}^{\prime}=y_{1}-2 y_{2}\) (b) \(\quad y_{1}^{\prime}=y_{1}+y_{2}-2 y_{3}\), \(y_{2}^{\prime}=-y_{1}+2 y_{2}+y_{3}\) \(y_{3}^{\prime}=y_{2}-y_{3}\) (c) \(y_{1}^{\prime}=2 y_{1}+y_{3}\) \(y_{2}^{\prime}=y_{2}\) $y_{3}^{\prime}=y_{1}+2 y_{3} .$$$ \begin{array}{l} \text { (d) } y_{1}^{\prime}=2 y_{1}-y_{2} \text { , }\\\ y_{2}^{\prime}=2 y_{1}+4 y_{2} .\\\ \begin{array}{ll} \text { (e) } & y_{1}^{\prime}=y_{1}-y_{2}, \\ & y_{2}^{\prime}=5 y_{1}-3 y_{2} . \\ \text { (f) } & y_{1}^{\prime}=3 y_{1}+y_{2}-y_{3}, \\ & y_{2}^{\prime}=y_{1}+3 y_{2}-y_{3}, \\ & y_{3}^{\prime}=3 y_{1}+3 y_{2}-y_{3} . \\ \text { (g) } & y_{1}^{\prime}=y_{3}, \\ & y_{2}^{\prime}=y_{1}-3 y_{3}, \\ & y_{3}^{\prime}=y_{2}+3 y_{3} . \end{array} \end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.