Chapter 2: Problem 14
Show that the solution of the initial-value problem $$ \begin{array}{r} y^{\prime}-2 x y=1 \\ y(0)=1 \end{array} $$ is $$ \phi(x)=e^{x^{2}}\left(1+\frac{\sqrt{\pi}}{2} \operatorname{erf}(x)\right) $$ where the emor function is defined by $$ \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t $$ and is tabulated.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.