Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate each expression. a. \(2 x-4(x-3),\) where \(x=1 \frac{1}{2}\) b. \(a(a-2)+3 a(a+4),\) where \(a=\frac{2}{3}\) c. \(2 x+6(x+2),\) where \(x=2 \frac{1}{4}\) d. \(6 x y-y^{2},\) where \(x=1 \frac{5}{16}\) and \(y=\frac{1}{8}\) e. \(x^{3}+x^{2},\) where \(x=1 \frac{1}{2}\)

Short Answer

Expert verified
Question: Evaluate the following expressions for the given values of the variables: A. 2x - 4(x-3), where x = 1 1/2 B. a(a-2) + 3a(a+4), where a = 2/3 C. 2x + 6(x+2), where x = 2 1/4 D. 6xy - y^2, where x = 1 5/16 and y = 1/8 E. x^3 + x^2, where x = 1 1/2 Answer: A. 9 B. 76/9 C. 30 D. 125/64 E. 45/8

Step by step solution

01

Substitute the value of x

Replace x with \(1\frac{1}{2}\) in the expression: \(2\left(1\frac{1}{2}\right) - 4\left(\left(1\frac{1}{2}\right) - 3\right)\).
02

Convert mixed numbers to improper fractions

Convert \(1\frac{1}{2}\) to an improper fraction: \(1\frac{1}{2}=\frac{3}{2}\).
03

Simplify the expression

Using the order of operations (PEMDAS): \(2\left(\frac{3}{2}\right) - 4\left(\frac{3}{2} - 3\right)= 3 - 4\left(\frac{3}{2} - \frac{6}{2}\right)=3-4\left(-\frac{3}{2}\right)\).
04

Multiply and simplify

\(3-4\left(-\frac{3}{2}\right)=3+6=\boxed{9}\). B. Evaluate \(a(a-2)+3a(a+4),\) where \(a=\frac{2}{3}\).
05

Substitute the value of a

Replace a with \(\frac{2}{3}\) in the expression: \(\frac{2}{3}\left(\frac{2}{3}-2\right) +3\frac{2}{3}\left(\frac{2}{3}+4\right)\).
06

Simplify the expression

Using the order of operations (PEMDAS): \(\frac{2}{3}\left(\frac{2}{3} - \frac{6}{3}\right) + 2\left(\frac{2}{3} + \frac{12}{3}\right) = \frac{2}{3}\left(-\frac{4}{3}\right) + 2\left(\frac{14}{3}\right)\).
07

Multiply and simplify

\(-\frac{8}{9}+\frac{28}{3}=\frac{-8+84}{9}=\frac{76}{9}\). So, the expression evaluates to \(\boxed{\frac{76}{9}}\). C. Evaluate \(2x+6(x+2),\) where \(x=2 \frac{1}{4}\).
08

Substitute the value of x

Replace x with \(2\frac{1}{4}\) in the expression: \(2(2\frac{1}{4})+6(2\frac{1}{4}+2)\).
09

Convert mixed numbers to improper fractions

Convert \(2\frac{1}{4}\) to an improper fraction: \(2\frac{1}{4} = \frac{9}{4}\).
10

Simplify the expression

Using the order of operations (PEMDAS): \(2\left(\frac{9}{4}\right) + 6\left(\frac{9}{4} + \frac{8}{4}\right) = \frac{18}{4} + 6\left(\frac{17}{4}\right)\).
11

Multiply and simplify

\(\frac{18}{4}+\frac{102}{4}=\frac{120}{4}=\boxed{30}\). D. Evaluate \(6xy-y^2,\) where \(x=1\frac{5}{16}\) and \(y=\frac{1}{8}\).
12

Substitute the values of x and y

Replace x with \(1\frac{5}{16}\) and y with \(\frac{1}{8}\) in the expression: \(6(1\frac{5}{16})\left(\frac{1}{8}\right) - \left(\frac{1}{8}\right)^2\).
13

Convert mixed numbers to improper fractions

Convert \(1\frac{5}{16}\) to an improper fraction: \(1\frac{5}{16}=\frac{21}{16}\).
14

Simplify the expression

Using the order of operations (PEMDAS): \(6\left(\frac{21}{16}\right)\left(\frac{1}{8}\right) - \left(\frac{1}{64}\right) = \frac{126}{64}-\frac{1}{64}\).
15

Subtract and simplify

\(\frac{126}{64}-\frac{1}{64}=\frac{125}{64}\). So, the expression evaluates to \(\boxed{\frac{125}{64}}\). E. Evaluate \(x^3+x^2,\) where \(x=1\frac{1}{2}\).
16

Substitute the value of x

Replace x with \(1\frac{1}{2}\) in the expression: \((1\frac{1}{2})^3+(1\frac{1}{2})^2\).
17

Convert mixed numbers to improper fractions

Convert \(1\frac{1}{2}\) to an improper fraction: \(1\frac{1}{2} = \frac{3}{2}\).
18

Simplify the expression

Using the order of operations (PEMDAS): \(\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^2 = \frac{27}{8}+\frac{9}{4}\).
19

Add and simplify

\(\frac{27}{8}+\frac{18}{8}=\frac{45}{8}\). So, the expression evaluates to \(\boxed{\frac{45}{8}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free