Chapter 5: Problem 8
(i) Let \(f:(a, b) \rightarrow E\) be finite, continuous, with a right
derivative on \((a, b) .\) Prove that \(q=\lim _{x \rightarrow a^{+}}
f_{+}^{\prime}(x)\) exists (finite) iff
$$
q=\lim _{x, y \rightarrow a^{+}} \frac{f(x)-f(y)}{x-y}
$$
i.e., iff
$$
(\forall \varepsilon>0)(\exists c>a)(\forall x, y \in(a, c) \mid x \neq y)
\quad\left|\frac{f(x)-f(y)}{x-y}-q\right|<\varepsilon
$$
[Hints: If so, let \(y \rightarrow x^{+}\) (keeping \(x\) fixed) to obtain
$$
(\forall x \in(a, c)) \quad\left|f_{+}^{\prime}(x)-q\right| \leq \varepsilon .
\quad \text { (Why?) }
$$
Conversely, if \(\lim _{x \rightarrow a^{+}} f_{+}^{\prime}(x)=q,\) then
$$
(\forall \varepsilon>0)(\exists c>a)(\forall t \in(a, c))
\quad\left|f_{+}^{\prime}(t)-q\right|<\varepsilon
$$
Put
$$
M=\sup _{a
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.