Chapter 5: Problem 7
For any \(s \in E^{1}\) and \(n \in \bar{N},\) define $$ \left(\begin{array}{l} s \\ n \end{array}\right)=\frac{s(s-1) \cdots(s-n+1)}{n !} \text { with }\left(\begin{array}{l} s \\ 0 \end{array}\right)=1 \text { . } $$ Then prove the following. (i) \(\lim _{n \rightarrow \infty} n\left(\begin{array}{l}s \\\ n\end{array}\right)=0\) if \(s>0\). (ii) \(\lim _{n \rightarrow \infty}\left(\begin{array}{l}s \\\ n\end{array}\right)=0\) if \(s>-1\). (iii) For any fixed \(s \in E^{1}\) and \(x \in(-1,1),\) $$ \lim _{n \rightarrow \infty}\left(\begin{array}{l} s \\ n \end{array}\right) n x^{n}=0 $$ hence $$ \lim _{n \rightarrow \infty}\left(\begin{array}{l} s \\ n \end{array}\right) x^{n}=0 $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.