Chapter 5: Problem 6
Verify that the assumptions of L'Hôpital's rule hold, and find the following limits. (a) \(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\ln (e-x)+x-1} ;\) (b) \(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}\) (c) \(\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x} ;\) (d) \(\lim _{x \rightarrow 0^{+}}\left(x^{q} \ln x\right), q>0\) (e) \(\lim _{x \rightarrow+\infty}\left(x^{-q} \ln x\right), q>0\) (f) \(\lim _{x \rightarrow 0^{+}} x^{x}\) (g) \(\lim _{x \rightarrow+\infty}\left(x^{q} a^{-x}\right), a>1, q>0\) (h) \(\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\operatorname{cotan}^{2} x\right)\); (i) \(\lim _{x \rightarrow+\infty}\left(\frac{\pi}{2}-\arctan x\right)^{1 / \ln x}\) (j) \(\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 /(1-\cos x)}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.