Chapter 5: Problem 6
Let \(g: E^{1} \rightarrow E^{1}\) (real) and \(f: E^{1} \rightarrow E\) be relatively continuous on \(J=[c, d]\) and \(I=[a, b],\) respectively, with \(a=g(c)\) and \(b=g(d) .\) Let $$ h=f \circ g $$ Prove that if \(g\) is one to one on \(J,\) then (i) \(g[J]=I,\) so \(f\) and \(h\) describe one and the same arc \(A=f[I]=h[J]\); (ii) \(V_{f}[I]=V_{h}[J] ;\) i.e., \(\ell_{f} A=\ell_{h} A .\) [Hint for (ii): Given \(P=\left\\{a=t_{0}, \ldots, t_{m}=b\right\\}\), show that the points \(s_{i}=g^{-1}\left(t_{i}\right)\) form a partition \(P^{\prime}\) of \(J=[c, d],\) with \(S\left(h, P^{\prime}\right)=S(f, P) .\) Hence deduce \(V_{f}[I] \leq\) \(V_{h}[J]\) Then prove that \(V_{h}[J] \leq V_{f}[I],\) taking an arbitrary \(P^{\prime}=\left\\{c=s_{0}, \ldots, s_{m}=d\right\\},\) and defining \(P=\left\\{t_{0}, \ldots, t_{m}\right\\},\) with \(t_{i}=g\left(s_{i}\right) .\) What if \(\left.g(c)=b, g(d)=a ?\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.