Chapter 5: Problem 13
Prove that if \(\int f\) exists on each \(I_{n}=\left[a_{n}, b_{n}\right],\) where $$ a_{n+1} \leq a_{n} \leq b_{n} \leq b_{n+1}, \quad n=1,2, \ldots $$ then \(\int f\) exists on $$ I=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] $$ itself an interval with endpoints \(a=\inf a_{n}\) and \(b=\sup b_{n}, a, b \in E^{*}\). [Hint: Fix some \(c \in I_{1}\). Define $$ H_{n}(t)=\int_{c}^{t} f \text { on } I_{n}, n=1,2, \ldots $$ Prove that $$ (\forall n \leq m) \quad H_{n}=H_{m} \text { on } I_{n}\left(\text { since }\left\\{I_{n}\right\\} \uparrow\right) . $$ Thus \(H_{n}(t)\) is the same for all \(n\) such that \(t \in I_{n},\) so we may simply write \(H\) for \(H_{n}\) on \(I=\bigcup_{n=1}^{\infty} I_{n} .\) Show that \(H=\int f\) on all of \(I ;\) verify that \(I\) is, indeed, an interval.]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.