Chapter 4: Problem 9
Suppose that no two of the sets \(A_{i}(i \in I)\) are disjoint. Prove that if all \(A_{i}\) are connected, so is \(A=\bigcup_{i \in I} A_{i}\) [Hint: If not, let \(A=P \cup Q(P, Q\) as in Definition 3). Let \(P_{i}=A_{i} \cap P\) and \(Q_{i}=A_{i} \cap Q,\) so \(A_{i}=P_{i} \cup Q_{i}, i \in I\) That is, onto a two-point set \\{0\\}\(\cup\\{1\\}\). \S10. Arcs and Curves. Connected Sets At least one of the \(P_{i}, Q_{i}\) must be \(\emptyset\) (why?); say, \(Q_{j}=\emptyset\) for some \(j \in I\). Then \((\forall i) Q_{i}=\emptyset,\) for \(Q_{i} \neq \emptyset\) implies \(P_{i}=\emptyset,\) whence $$ A_{i}=Q_{i} \subseteq Q \Longrightarrow A_{i} \cap A_{j}=\emptyset\left(\text { since } A_{j} \subseteq P\right) $$ contrary to our assumption. Deduce that \(Q=\bigcup_{i} Q_{i}=\emptyset\). (Contradiction!)]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.