Chapter 4: Problem 18
Let \(\bar{p}_{0}, \bar{p}_{1}, \ldots, \bar{p}_{m}\) be fixed points in \(E^{n}\left({ }^{*}\right.\) or in another normed space \()\). Let $$f(t)=\bar{p}_{k}+(t-k)\left(\bar{p}_{k+1}-\bar{p}_{k}\right)$$ whenever \(k \leq t \leq k+1, t \in E^{1}, k=0,1, \ldots, m-1\) Show that this defines a uniformly continuous mapping \(f\) of the interval \([0, m] \subseteq E^{1}\) onto the "polygon" $$\bigcup_{k=0}^{m-1} L\left[p_{k}, p_{k+1}\right]$$ In what case is \(f\) one to one? Is \(f^{-1}\) uniformly continuous on each \(L\left[p_{k}, p_{k+1}\right] ?\) On the entire polygon?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.