Chapter 4: Problem 10
Prove Theorem 2 , with (i) replaced by the weaker assumption ("subuniform limit") $$ (\forall \varepsilon>0)(\exists \delta>0)\left(\forall x \in G_{\neg p}(\delta)\right)\left(\forall y \in G_{\neg q}(\delta)\right) \quad \rho(g(x), f(x, y))<\varepsilon $$ and with iterated limits defined by $$ s=\lim _{x \rightarrow p} \lim _{y \rightarrow q} f(x, y) $$ iff \((\forall \varepsilon>0)\) $$ \left(\exists \delta^{\prime}>0\right)\left(\forall x \in G_{\neg p}\left(\delta^{\prime}\right)\right)\left(\exists \delta_{x}^{\prime \prime}>0\right)\left(\forall y \in G_{\neg q}\left(\delta_{x}^{\prime \prime}\right)\right) \quad \rho(f(x, y), s)<\varepsilon $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.