Chapter 3: Problem 5
Take for granted the lemma that $$ a^{1 / p} b^{1 / q} \leq \frac{a}{p}+\frac{b}{q} $$ if \(a, b, p, q \in E^{1}\) with \(a, b \geq 0\) and \(p, q>0,\) and $$ \frac{1}{p}+\frac{1}{q}=1 $$ (A proof will be suggested in Chapter \(5, \S 6,\) Problem 11.) Use it to prove Hölder's inequality, namely, if \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1,\) then $$ \sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}} \text { for any } x_{k}, y_{k} \in C . $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.