Chapter 1: Problem 5
Let \(f: N \rightarrow N(N=\\{\) naturals \(\\})\). For each of the following functions, specify \(f[N]\), i.e., \(D_{f}^{\prime},\) and determine whether \(f\) is one to one and onto \(N,\) given that for all \(x \in N\) (i) \(f(x)=x^{3} ;\) (ii) \(f(x)=1 ;\) (iii) \(f(x)=|x|+3 ;\) (iv) \(f(x)=x^{2}\) (v) \(f(x)=4 x+5\). Do all this also if \(N\) denotes (a) the set of all integers; (b) the set of all reals.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.