Chapter 5: Problem 34
Consider a language with identity and function symbols, and interpret a \(n\)-ary symbol \(F\) by a function \(F_{k}: D(k)^{n} \rightarrow D(k)\) for each \(k\) in a given Kripke model \(\mathcal{K}\). We require monotonicity: \(k \leq l \Rightarrow F_{k} \subseteq F_{l}\) and preservation of equality, where \(a \sim_{k} b \Leftrightarrow k \Vdash \bar{a}=\bar{b}_{1}: \vec{a} \sim_{k} \vec{b} \Rightarrow F_{k}(\vec{a}) \sim_{k}\) \(F_{k}(\vec{b})\). (i) Show \(K \Vdash \forall \vec{x} \exists ! y(F(\vec{x})=y)\) (ii) Show \(\mathcal{K} \| I_{4}\). (iii) Let \(\mathcal{K} \|-\forall \vec{x} \exists ! y \varphi(\vec{x}, y)\), show that we can define for each \(k\) and \(F_{k}\) satisfying the above requirements such that \(\mathcal{K} \| \forall(\vec{x} \varphi(\vec{x}, F(\vec{x}))\). (iv) Show that one can conservatively add definable Skolem functions. Note that we have shown how to introduce functions in Kripke models, when they are given by "functional" relations. So, strictly speaking, Kripke models with just relations are good enough.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.