Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 8

Show that HA \(\vdash \varphi \vee \psi \leftrightarrow \exists x(x=0 \rightarrow \varphi) \wedge(x \neq 0 \rightarrow \psi))\),

Problem 16

Each Kripke model with bottom node \(k_{0}\) can be turned into a model over a tree as follows: \(K_{t r}\) consists of all finite increasing sequences \(\left\langle k_{0}, k_{1}, \ldots, k_{n}\right\rangle, k_{i}

Problem 27

Let \(\mathbf{D}=\mathbf{R}[X] / X^{2}\) be the ring of dual numbers. D has a unique maximal ideal, generated by \(X\). Consider a Kripke model with two nodes \(k_{0}, k_{1} ; k_{0}

Problem 28

Show that \(\forall x(\varphi \vee \psi(x)) \rightarrow(\varphi \vee \forall x \psi(x))(x \notin F V(\varphi))\) holds in all Kripke models with constant domain function (i.e. \(\forall k l(D(k)=D(l))\).

Problem 31

Consider intuitionistic predicate logic without function symbols. Prove the following extension of the existence property: \(\vdash \exists y \varphi\left(x_{1}, \ldots, x_{n}, y\right) \Leftrightarrow\) \(\vdash \varphi\left(x_{1}, \ldots, x_{n}, t\right)\), where \(t\) is a constant or one of the variables \(x_{1}, \ldots, x_{n} .\) (Hint: replace \(x_{1}, \ldots, x_{n}\) by new constants \(a_{1}, \ldots, a_{n}\) ).

Problem 34

Consider a language with identity and function symbols, and interpret a \(n\)-ary symbol \(F\) by a function \(F_{k}: D(k)^{n} \rightarrow D(k)\) for each \(k\) in a given Kripke model \(\mathcal{K}\). We require monotonicity: \(k \leq l \Rightarrow F_{k} \subseteq F_{l}\) and preservation of equality, where \(a \sim_{k} b \Leftrightarrow k \Vdash \bar{a}=\bar{b}_{1}: \vec{a} \sim_{k} \vec{b} \Rightarrow F_{k}(\vec{a}) \sim_{k}\) \(F_{k}(\vec{b})\). (i) Show \(K \Vdash \forall \vec{x} \exists ! y(F(\vec{x})=y)\) (ii) Show \(\mathcal{K} \| I_{4}\). (iii) Let \(\mathcal{K} \|-\forall \vec{x} \exists ! y \varphi(\vec{x}, y)\), show that we can define for each \(k\) and \(F_{k}\) satisfying the above requirements such that \(\mathcal{K} \| \forall(\vec{x} \varphi(\vec{x}, F(\vec{x}))\). (iv) Show that one can conservatively add definable Skolem functions. Note that we have shown how to introduce functions in Kripke models, when they are given by "functional" relations. So, strictly speaking, Kripke models with just relations are good enough.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks