Chapter 3: Problem 12
Let \(X \subseteq|\mathfrak{A}| .\) Define \(X_{0}=X \cup C\) where \(C\) is the set of constants of \(\mathfrak{A}, X_{n+1}=X_{n} \cup\left\\{f\left(a_{1}, \ldots, a_{m}\right) \mid f\right.\) in \(\left.\mathfrak{A}, a_{1}, \ldots, a_{m} \in X_{n}\right\\}, X_{\omega}=\) \(\bigcup\left\\{X_{n} \mid n \in \mathbb{N}\right\\}\) Show that \(\mathfrak{B}=\left\langle X_{\omega}, R_{1} \cap X_{\omega}^{r_{1}}, \ldots, R_{2} \cap X_{\omega}^{r_{1}}, f_{1}\left|X_{\omega}^{a_{1}}, \ldots, f_{m}\right| X_{\omega}^{a_{m}},\left\\{c_{1} \mid i \in\right.\right.\) \(I\\}\rangle\) is a substructure of \(\mathfrak{A}\). We say that \(\mathfrak{B}\) is the substructure generated by \(X\). Show that \(\mathfrak{B}\) is the smallest substructure of \(\mathfrak{A}\) containing \(X ; \mathfrak{B}\) can also be characterized as the intersection of all substructures containing \(X\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.