Chapter 2: Problem 3
Let \(\mathfrak{A}_{1}=(\mathbb{N}, \leq)\) and \(\mathfrak{A}_{2}=\langle\mathbb{Z}, \leq\rangle\) be the ordered sets of natural, respectively integer, numbers. Give a sentence \(\sigma\) such that \(\mathfrak{A l}_{1} \models \sigma\) and \(\mathfrak{A}_{2} \models \neg \sigma\). Do the same for \(\mathfrak{A}_{2}\) and \(\mathfrak{B}=\langle\mathbb{Q}, \leq\rangle\) (the ordered set of rationals). N.B. \(\sigma\) is in the language of posets; in particular, you may not add extra constants, function symbols, etc., defined abbreviations are of course harmless.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.