Chapter 2: Problem 12
Monadic predicate calculus has only unary predicate symbols (no identity). Consider \(\mathfrak{A}=\left\langle A, R_{1}, \ldots, R_{n}\right\rangle\) where all \(R_{i}\) are sets. Define \(a \sim\) \(b:=a \in R_{i} \Leftrightarrow b \in R_{i}\) for all \(i \leq n\). Show that \(\sim\) is an equivalence relation and that \(\sim\) has at most \(2^{n}\) equivalence classes. The equivalence class of \(a\) is denoted by \([a]\). Define \(B=A / \sim\) and \([a] \in S_{i} \Leftrightarrow a \in R_{i}, \mathfrak{B}=\) \(\left\langle B, S_{1}, \ldots, S_{n}\right\rangle .\) Show \(\mathfrak{A l} \models \sigma \Leftrightarrow \mathfrak{B} \models \sigma\) for all \(\sigma\) in the corresponding language. For such \(\sigma\) show \(\models \sigma \Leftrightarrow \mathfrak{A} \models \sigma\) for all \(\mathfrak{A}\) with at most \(2^{n}\) elements. Using this fact, outline a decision procedure for truth in monadic predicate calculus.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.