Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 7

Show \(\not \models \exists x \varphi \wedge \exists x \psi \rightarrow \exists x(\varphi \wedge \psi)\).

Problem 7

Show that \(\mathfrak{A} \models \varphi \Rightarrow \mathfrak{A} \models \psi\) for all \(\mathfrak{A}\), implies \(\models \varphi \Rightarrow \models \psi\), but not vice versa.

Problem 8

Let \(\mathfrak{A}\) be a ring, give a sentence \(\sigma\) such that \(\mathfrak{A} \models \sigma \Leftrightarrow \mathfrak{A}\) is an integral domain (has no divisors of zero).

Problem 9

Show \(\models \forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi) ; \models(\exists x \varphi \rightarrow \exists x \psi) \rightarrow \exists x(\varphi \rightarrow \psi)\) \(\models \forall x(\varphi \mapsto \psi) \rightarrow(\forall x \varphi \leftrightarrow \forall x \psi) ; \models(\forall x \varphi \rightarrow \exists x \psi) \leftrightarrow \exists x(\varphi \rightarrow \psi) ;\) \(\models(\exists x \varphi \rightarrow \forall x \psi) \rightarrow \forall x(\varphi \rightarrow \psi)\)

Problem 10

Define in the language of arithmetic: (a) \(x\) and \(y\) are relatively prime; (b) \(x\) is the smallest prime greater than \(y\); (c) \(x\) is the greatest number with \(2 x

Problem 12

Let \(S\) be a binary predicate symbol. Show \(\models \neg \exists y \forall x(S(y, x) \leftrightarrow \neg S(x, x))\). (Think of " \(y\) shaves \(x\) " and recall Russell's barber's paradox).

Problem 12

Monadic predicate calculus has only unary predicate symbols (no identity). Consider \(\mathfrak{A}=\left\langle A, R_{1}, \ldots, R_{n}\right\rangle\) where all \(R_{i}\) are sets. Define \(a \sim\) \(b:=a \in R_{i} \Leftrightarrow b \in R_{i}\) for all \(i \leq n\). Show that \(\sim\) is an equivalence relation and that \(\sim\) has at most \(2^{n}\) equivalence classes. The equivalence class of \(a\) is denoted by \([a]\). Define \(B=A / \sim\) and \([a] \in S_{i} \Leftrightarrow a \in R_{i}, \mathfrak{B}=\) \(\left\langle B, S_{1}, \ldots, S_{n}\right\rangle .\) Show \(\mathfrak{A l} \models \sigma \Leftrightarrow \mathfrak{B} \models \sigma\) for all \(\sigma\) in the corresponding language. For such \(\sigma\) show \(\models \sigma \Leftrightarrow \mathfrak{A} \models \sigma\) for all \(\mathfrak{A}\) with at most \(2^{n}\) elements. Using this fact, outline a decision procedure for truth in monadic predicate calculus.

Problem 14

Find prenex normal forms for (a) \(\neg((\neg \forall x \varphi(x) \vee \forall x \psi(x)) \wedge(\exists x \sigma(x) \rightarrow \forall x \tau(x)),\), (b) \(\forall x \varphi(x) \leftrightarrow \exists x \psi(x)\), (c) \(\neg(\exists x \varphi(x, y) \wedge \forall y(\psi(y)) \rightarrow \varphi(x, x)) \rightarrow \exists x \forall y \sigma(x, y)))\), (d) \(((\forall x \varphi(x) \rightarrow \exists y \psi(x, y)) \rightarrow \psi(x, x)) \rightarrow \exists x \forall y \sigma(x, y)\).

Problem 14

Let \(\mathfrak{A}=\langle\mathbb{N},<\rangle\) and \(\mathfrak{B}=\langle\mathbb{N}, \Delta\rangle\), where \(n \Delta m\) iff (i) \(n

Problem 15

Show \(\models \exists x(\varphi(x) \rightarrow \forall y \varphi(y))\). (It is instructive to think of \(\varphi(x)\) as ' \(x\) drinks').

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks