Chapter 1: Problem 2
Consider the full language \(\mathcal{L}\) with the connectives \(\wedge, \rightarrow, \perp, \leftrightarrow \vee\) and the restricted language \(\mathcal{L}^{\prime}\) with connectives \(\wedge, \rightarrow, \perp\). Using the appropriate derivation rules we get the derivability notions \(\vdash\) and \(\vdash^{\prime}\). We define an obvious translation from \(\mathcal{L}\) into \(\mathcal{L}^{\prime}\) : \(\begin{aligned} \varphi^{+} &:=\varphi \text { for atomic } \varphi \\\\(\varphi \square \psi)^{+} &:=\varphi^{+} \square \psi^{+} \text {for } \square=\wedge, \rightarrow, \end{aligned}\) \((\varphi \vee \psi)^{+}:=\neg\left(\neg \varphi^{+} \wedge \neg \varphi^{+}\right)\), where \(\neg\) is an abbreviation, \((\varphi \leftrightarrow \psi)^{+}:=\left(\varphi^{+} \rightarrow \psi^{+}\right) \wedge\left(\psi^{+} \rightarrow \varphi^{+}\right)\), $$ (\neg \varphi)^{+}:=\varphi^{+} \rightarrow \perp . $$ Show (i) \(\vdash \varphi \leftrightarrow \varphi^{+}\), (ii) \(\quad \vdash \varphi \Leftrightarrow \vdash^{\prime} \varphi^{+}\), (iii) \(\varphi^{+}=\varphi\) for \(\varphi \in \mathcal{L}^{\prime}\). (iv) Show that the full logic, is conservative over the restricted logic, i.e. for \(\varphi \in \mathcal{L}^{\prime} \vdash \varphi \Leftrightarrow \vdash^{\prime} \varphi\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.