Chapter 3: Q48E (page 110)
Consider the linear transformation\(T(\vec x) = det\left( {\begin{aligned}{*{20}{c}}1&\mid &{}&\mid &\mid \\{{{\vec v}_1}}&{{{\vec v}_2}}&{...}&{{{\vec v}_{n - 1}}}&{\vec x}\\\mid &\mid &{}&\mid &\mid \end{aligned}} \right)\)
From\({R^n}\)to\(\mathbb{R}\), where\({\vec v_1},...,{\vec v_{n - 1}}\), are linearly independent vectors in\({R^n}\). Describe image and kernel of this transformation, and determine their dimensions.
Short Answer
Therefore, the dimensions of kernel and image is given by,
\(\ker T = {\mathop{\rm span}\nolimits} \left( {{{\vec v}_1},\overrightarrow {{v_2}} , \ldots ,{v_{n - 1}}} \right)\), \(\dim \ker T = n - 1\).
\({\mathop{\rm im}\nolimits} T = \mathbb{R}\), \(\dim {\mathop{\rm im}\nolimits} T = 1\).