Chapter 5: Q34E (page 262)
In the space \(C\left( { - 1,1} \right)\),we define the inner product \(\left\langle {{\bf{f,g}}} \right\rangle {\bf{ = }}\int\limits_{{\bf{ - 1}}}^{\bf{1}} {\frac{{\bf{2}}}{{\bf{\pi }}}} \sqrt {{\bf{1 - }}{{\bf{t}}^{\bf{2}}}} {\bf{f}}\left( {\bf{t}} \right){\bf{g}}\left( {\bf{t}} \right){\bf{dt = }}\frac{{\bf{2}}}{{\bf{\pi }}}\int\limits_{{\bf{ - 1}}}^{\bf{1}} {\sqrt {{\bf{1 - }}{{\bf{t}}^{\bf{2}}}} } {\bf{f}}\left( {\bf{t}} \right){\bf{g}}\left( {\bf{t}} \right){\bf{dt}}\). See Exercise 33; here we let \(w\left( t \right) = \frac{2}{\pi }\sqrt {1 - {t^2}} \). (This function \(w\left( t \right)\)is called a Wigner semicircle distribution, after the Hungarian physicist and mathematician E.P. Wigner \(\left( {{\bf{1902 - 1995}}} \right)\), who won the \(1963\)Nobel Prize in Physics.) Since this is not a course in calculus, here are some inner products that will turn out to be useful:\(\left\langle {1,{t^2}} \right\rangle = \frac{1}{4},\left\langle {t,{t^3}} \right\rangle = \frac{1}{8}, and \left\langle {{t^3},{t^3}} \right\rangle = \frac{5}{{64}}\).
(a) Find \(\int\limits_{{\bf{ - 1}}}^{\bf{1}} {{\bf{w}}\left( {\bf{t}} \right)} {\bf{dt}}\). Sketch a rough graph of the weight function \(w\left( t \right)\).
(b) Find the norm of the constant function \(f\left( t \right) = 1\).
(c) Find \(\left\langle {{{\bf{t}}^{\bf{2}}}{\bf{,}}{{\bf{t}}^{\bf{3}}}} \right\rangle \); explain More generally, find \(\left\langle {{t^n},{t^m}} \right\rangle \)for positive integers n and m whose sum is odd.
(d) Find \(\left\langle {t,t} \right\rangle \)and \(\left\langle {{t^2},{t^2}} \right\rangle \).Also, find the norm of the functions \(t\)and \({t^2}\).
(e) Applying the Gram-Schmidt process to the standard basis \({\bf{1,t,}}{{\bf{t}}^{\bf{2}}}{\bf{,}}{{\bf{t}}^{\bf{3}}}\)of \({{\bf{P}}_{\bf{3}}}\),construct an orthonormal basis \({{\bf{g}}_{\bf{0}}}\left( {\bf{t}} \right){\bf{,}}...{\bf{,}}{{\bf{g}}_{\bf{3}}}\left( {\bf{t}} \right)\)of \({{\bf{P}}_{\bf{3}}}\)for the given inner product. (The polynomials \({{\bf{g}}_{\bf{0}}}\left( {\bf{t}} \right){\bf{,}}...{\bf{,}}{{\bf{g}}_{\bf{3}}}\left( {\bf{t}} \right)\)are the first few Chebyshev polynomials of the second kind, named after the Russian mathematician Pafnuty Chebyshev (1821 - 1894). They have a wide range of applications in math, physics, and engineering.)
(f)Find the polynomial \({\bf{g}}\left( {\bf{t}} \right)\)in \({{\bf{P}}_{\bf{3}}}\)that best approximates the function \({\bf{f}}\left( {\bf{t}} \right){\bf{ = }}{{\bf{t}}^{\bf{4}}}\)on the interval \(\left( {{\bf{ - 1,1}}} \right)\),for the inner product introduced in this exercise.
Short Answer
(a) The value of \(\int\limits_{ - 1}^1 {w\left( t \right)dt} \) is 1, and the graph of the weight function \(w\left( t \right)\)is
(b) The norm of the constant function \(f\left( t \right) = 1\)is 1
(c) The value of \(\left\langle {{t^2},{t^3}} \right\rangle \)is 0 and the value of \(\left\langle {{t^n},{t^m}} \right\rangle \)is 0 for positive integers n and m whose sum is odd.
(d) The value of \(\left\langle {t,t} \right\rangle is \frac{1}{4}\)and the value of \(\left\langle {{t^2},{t^2}} \right\rangle is \frac{1}{8}\)and the norm of the functions \(t and {t^2}\)is \(\frac{1}{2} and \sqrt {\frac{1}{8}} \).
(e) An orthonormal basis \({g_0}\left( t \right),...,{g_3}\left( t \right)\)of \({P_3}\)for the given inner product is \(1,2t,\sqrt 8 {t^2},\frac{8}{{\sqrt 5 }}{t^3}\).
(f) The polynomial \(g\left( t \right)\)in \({P_3}\)that best approximates the function \(f\left( t \right) = {t^4}\)on the interval \(\left( { - 1,1} \right)\)for the inner product introduced in this exercise is \(\frac{2}{\pi }\left( {\frac{3}{4} + \frac{{15}}{{2\sqrt 3 }}\pi {t^3}} \right)\).