Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find all orthogonal 2 × 2 matrices.

Short Answer

Expert verified

Any2×2 orthogonal matrix has one of the following forms,

role="math" localid="1660124575708" ab-bavabb-a,a,bR,a2+b2=1

Step by step solution

01

Form of the matrix A.

Let’s assume thatvr1=a,cT,vr2=b,dT are the column vectors of an orthogonal matrix A.

Therefore, orthogonal conditions arev1=v2=1 andv1.v2=0.

Let’s find the form of matrix.

vr1=1a2+c2=1a2+c2=1vr2=1b2+d2=1b2+d2=1vr1.vr2=0acbdab+cd=0

Now use these equations to make conclusion about the entries of A.

a2+c2=1b2+d2=1ab+cd=0a2=1c2b2=1d2ab=cda2=1c2d2=1b2(ab)2=(cd)2a2=1c2d2=1b2a2b2=c2d2a2=1c2d2=1b21c2b=c21b2a2=1c2d2=1b2b2c2b2=c2c2b2a2=1c2d2=1b2b2=c2a2=1b2d2=1b2b2=c2a2=d2b2=c2ab+cd=0d=±ab2=c2ab+cd=0d=±ab2=c2ab+c(±a)=0d=±ab2=c2a(b+±c)=0d=±ab2=c2(b+±c)=0,(a0)d=±ac=mb

Hence, the solution is any 2×2orthogonal matrix has one of the following forms is

ab-bavabb-a,a,bR,a2+b2=1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free