Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Using paper and pencil, perform the Gram-Schmidt process on the sequences of vectors given in Exercises 1 through

14. [1717],[0727],[1816]

Short Answer

Expert verified

The orthonormal vectors of the sequence[1717],[0727],[1816]is 1/10[1717],1/2[-1010],1/2[010-1].

Step by step solution

01

Determine the Gram-Schmidt process.

Consider a basis of a subspace VofRn forj=2,,m we resolve the vectorvj into its components parallel and perpendicular to the span of the preceding vectors V1,,Vj-1,

Then

u1=1|v1|v1,u2=1|v2|v2,........,uj=1|vj|vj,.......,um=1|vm|vm

02

Apply the Gram-Schmidt process

Obtain the value of u1,u2 andu3 according to Gram-Schmidt process.

u1=v1v....(1)u2=v2-u1.u2u1v2-u1.u2u1....(2)u3=v3-u1.u3u1-u2.u3u2v3-u1.u3u1-u2.u3u2....(3)

Find u1.

u1=11001717=1101717

Now, here is need to find out the values ofv2-u1·v2u1 andv2-u1·v2u1 to obtain the value of u2.

u1.v2=10u1.v2u1=1717v2-u1.v2u1=0727-1717=-1010v2-u1.v2u1=2

Next, solve forv2-u1·v2u1and v2-u1·v2u1.

role="math" localid="1659952093244" u1.v2=10u1.v2u1=1717v2-u1.v2u1=0727-1717=-1010v2-u1.v2u1=2

Thus,

u2=12-1010

03

Find u→3

Now, consider the equation below to obtain the value ofin equation (3).

Here is need to find out the values ofv3-u1·v3u1-u2·v3u2 andv3-u1·v3u1-u2·v3u2to obtain the value of u3.

u1·v3=10u1·v3u1=1/21717v3.u2=0u2·v3=0000

Now find, v3-u1·v3u1-u2·v3u2and v3-u1·v3u1-u2·v3u2.

v3-u1·v3u1-u2·v3u2=1816-1717-0000=010-1v3-u1·v3u1-u2·v3u2=2

Now, find u3.

u3=12010-1

Thus, the values of u1,u2 andu3 are 1/101717,1/2-1010,1/2010-1.

Hence, the orthonormal vectors are 1/101717,1/2-1010,1/2010-1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free