As per the question, let\(f{\rm{ and }}g{\rm{ in }}C\left[ {0,2\pi } \right]\), then for\(m\)being a nonnegative integer, we have:
\(\left\langle {\left( {f + g} \right),\cos mt} \right\rangle {\rm{ and }}\left\langle {\left( {f + g} \right),\sin mt} \right\rangle \)
Usinglinearity of the inner product, we have:
\[\begin{array}{c}\left\langle {\left( {f + g} \right),\cos mt} \right\rangle = \left\langle {f,\cos mt} \right\rangle + \left\langle {g,\cos mt} \right\rangle \\\left\langle {\left( {f + g} \right),\sin mt} \right\rangle = \left\langle {f,\sin mt} \right\rangle + \left\langle {g,\sin mt} \right\rangle \end{array}\]
When these expressions get divided by trigonometric values, they will yield similar coefficients for both functions.
Hence, the linearity property of the inner product is the reason behind a Fourier coefficient of the sum of two functions being the sum of the corresponding Fourier coefficients of the two functions.