Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the transformation T(q(x1,x2,x3))=q(x1,1,1)fromQ3toP2. Is T a linear transformation? If so, find the image, rank, kernel, and nullity of T

Short Answer

Expert verified

the solution is

Yes,T is a linear transformation

kerT=qx1,x2,x3=bx22+cx32+dx1x2-b+cx2x3-dx3x1Q3lmT=px=αx2+βx+λP2rankT=3andnullityT=3

Step by step solution

01

given information

T(q(x1,x2,x3))=q(x1,1,1)

02

linear transformation

Consider,q1x1,x2,x3=a1x12+b1x22+c1x32+d1x1x2+e1x2x3+f1x3x1,q1x1,x2,x3=a1x12+b1x22+c1x32+d1x1x2+e1x2x3+f1x3x1,Q3andαR,thena2x12+b2x22+c2x32+d2x1x2+e1x2x3+f1x3x1)=Tαd1+d2x12+αb1+b2x22+(αc1+c2x32+αd1+d2x1x2+αe1+e2x2x3+(αf1+f2)x3x1=αd1+a2x12+(αb1+b2+(αc1+c2)+αd1+d2x1+αe1+e2+(αf1+f2)=αa1x12+b1+c1+d1x1+e1f1x1+a2x12+b2+c2+d2x1+e2f2x1=αq1x1,1,1+q2x1,1,1=αTq1x1,x2,x3+Tq2x1,x2,x3,

Since satisfy

Tαq1+q2=αTq1+Tq2forαRandq1,q2iQ3,soT:Q3P2,Tqx1,x2,x3=qx11,1Isalineartransformation.

03

find kernel of T and image of T

kerT=qx1,x2,x3Q3:Tqx1,x2,x3=0P2=qx1,x2,x3Q2:qx1,1,1=0P2=ax12+bx22+dx1x2+ex2x3+fx3x1Q3:qx1,1,1=0=qx1,x2,x3Q3:ax12d+fx1+b+c+e=0P2=ax12+bx22+cx32+dx1x2+ex2x3+fx3x1Q3:a=0,f=-b-c=qx1,x2,x3=bx22+cx32+dx1x2-b+cx2x3dx3x1:b,c,dRlmT=Tqx1,x2,x3P2:qx1,x2,x3Q3=qx1,1,1P2:qx1,x2,x3=ax12+bx32+dx1x2+ex1x2+fx3x1Q3=qx1,1,1=a1x12+d+fx1+b+c+eP2px=αx2+βx+yP2:α=a,β=d+f,y=b+c+eRrankT=dimlmT=3nullityT=dimkerT=4

04

conclusion

Yes,T is a linear transformation

kerT=qx1,x2,x3=bx22+cx32+dx1x2-b+cx2x3-dx3x1Q3lmT=px=αx2+βx+λP2rankT=3andunllityT=3

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free