Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(For some background on the cross product in n, see Exercise 6.2.44.) Consider three linearly independent vectors v7,v2,v3 in 4.
a. What is the relationship between V(v1,v2,v3)and V(v1,v2,v3,v1×v2×v3)? See Definition 6.3.5. Exercise is helpful.
b. Express V(v1,v2,v3,v1×v2×v3)in terms ofrole="math" localid="1660118250452" v1×v2×v3.
c. Use parts (a) and (b) to express V(v1,v2,v3)in terms of ||v1×v2×v3||. Is your result still true when the vi are linearly dependent?
(Note the analogy to the fact that for two vectors v1 and v2 in role="math" localid="1660118435758" 3||v1×v2||is the area of the parallelogram defined byv1 andv2.)

Short Answer

Expert verified

Therefore,

a.V(v1,v2,v3,v1×v2×v3)=V(v1,v2,v3)(v1×v2×v3).b.V(v1,v2,v3,v1×v2×v3)=v1×v2×v32.c.V(v1,v2v3=v1×v2×v3.

Step by step solution

01

To find the relationship. 

a) To find,

Vv1,v2,v3=v1v2v3

On the other hand,

Vv1,v2,v3,v1×v2×v3=v1v2v3v1×v2×v3Vv1,v2,v3,v1×v2×v3=Vv1×v2×v3v1×v2×v3Vv1,v2,v3,v1×v2×v3=Vv1,v2,v3v1×v2×v3

02

To express the terms. 

b) To express the terms,

Vv1,v2,v3,v1×v2×v3=detv1v2v3v1×v2×v3Vv1,v2,v3,v1×v2×v3=detv1×v2×v3v1v2v3Vv1,v2,v3,v1×v2×v3=v1×v2×v32
03

When the v→i are linearly dependent.

c) From parts a. and b., we compute

Vv1,v2,v3=Vv1,v2,v3,v1×v2×v3v1×v2×v3Vv1,v2,v3,v1=v1×v2×v32v1×v2×v3Vv1,v2,v3=v1×v2×v3

If v1,v2and v3are linearly dependent, then both sides of this equation equal 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free