Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let T(x)=refL(x)be the reflection about the line L in2shown in the accompanying figure.

a. Draw sketches to illustrate that T is linear.

b. Find the matrix of T in terms ofθ.

Short Answer

Expert verified

a. The graph is,

b. The matrix is,

Tx=cos2θsin2θsin2θ-cos2θx

Step by step solution

01

Draw the sketch

The graph of the line L is,

The reflection of vector xabout the line L in 2is,

refLx=2projLx-x

Therefore, the graph of the line T is,

02

Compute the projection.

The projection of a vector xonto uis,

projLx=x·uuuuHere,x=x1x2,u=cosθsinθThus,theprojectionis,projLx=x1x2·cosθsinθcosθsinθ·cosθsinθcosθsinθprojLx=cosθx1+sinθx2cos2θ+sin2θcosθsinθprojLx=cosθx1+sinθx2cosθsinθprojLx=cosθx1+sinθx2cosθcosθx1+sinθx2sinθprojLx=cos2θx1+cosθsinθx2cosθsinθx1+sin2θprojLx=cos2θcosθsinθcosθsinθsin2θx

03

Compute the reflection

Thereflectionofthevectorxis,Tx=refLxHere,refLx=2projLx-xrefLx=2cos2θcosθsinθcosθsinθsin2θx-xrefLx=2cos2θcosθsinθcosθsinθsin2θ-1xrefLx=2cos2θcosθsinθcosθsinθsin2θ-1001xrefLx=2cos2θ-12cosθsinθ2cosθsinθ2sin2θ-1xrefLx=cos2θsin2θsin2θ-cos2θx

04

Compute the matrix

Tx=refLxT(x)=[cos2θsin2θsin2θ-cos2θ](x)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free