Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Solve the systemdxdt=[4348]xwith the given initial valuex(0)=[11].

Short Answer

Expert verified

The solution of the system is xt=0.25e-2t1-2+0.75e10t12.

Step by step solution

01

Determine the Eigen values

Consider the equation of dynamical system dxdt=[4348]xwith the initial value x0=11.

Compare the equationsdxdt=[4348]xanddxdt=Axas follows.

A=4348

Assumeλis an Eigen value of the matrix role="math" localid="1668579048604" 4348implies A-λI=0.

Substitute the values4348for A and1001for I in the equationA-λI=0as follows.

A-λI=04348-λ1001=0

Simplify the equation 4348-λ1001=0as follows.

4348-λ1001=04348-λ00λ=04-λ348-λ=04-λ8-λ-12=0

Further, simplify the equation as follows.

4-λ8-λ-12=032-4λ-8λ+λ2-12=0λ2-12λ+20=0λ2-10λ+2λ+20=0

Further, simplify the equation as follows.

λ2-10λ+2λ+20=0λλ-10+2λ-10=0λ+2λ-10=0

Therefore, the Eigen values of A are λ=-2,10.

02

Determine the Eigen vector corresponding to the Eigen values

Assume v1=x1y1and v2=x2y2are Eigen vector corresponding to λ=-2,10implies A-λ1Iv1=0and A-λ2Iv2=0.

Substitute the values role="math" localid="1668580359171" 4348for A, -2 for role="math" localid="1668580413744" λ1,x1y1 for v1 and 1001 for I in the equation A-λ1Iv1=0as follows.

role="math" localid="1668580106593" A-λ1Iv1=04348+21001x1y1=04348+2002x1y1=063410x1y1=0

Further, simplify the equation as follows.

63410x1y1=06x1+3y1=04x1+10y1=0

Simplify the equations 6x1+3y1=0and 4x1+10y1=0as follows.

6x1+3y1=06x1=-3y1

For x1=1implies y1=-2.

Therefore, the Eigen vector corresponding to λ1=-2is x1y1=1-2.

Substitute the values 4348for A, 10 for λ2,x2y2for v2 and1001for I in the equationA-λ2Iv2=0as follows.

role="math" localid="1668580713360" A-λ2Iv2=04348-101001x2y2=04348-100010x2y2=0-634-2x2y2=0

Further, simplify the equation as follows.

-634-2x2y2=0-6x2+3y2=04x2-2y2=0

Simplify the equations-6x2+3y2=0and4x2-2y2=0as follows.

-6x2+3y2=06x2=3y22x2=y2

Forx2=1implies y2=2.

Therefore, the Eigen vector corresponding toλ2=10is x2y2=12.

The Eigen vectors are v1=1-2and v2=12corresponding to the Eigen values λ1=-2andλ2=10respectively impliesS-1AS=BwhereS=111-22and B=-20010.

03

Determine he solution for dx→dt=[4348]x→

Substitute the value SBS-1 for A in the equationdxdt=Axas follows.

dxdt=Axdxdt=SBS-1xS-1ddt=BS-1xddtS-1x=BS-1x

Assumec=S-1ximplies ddtc=Bc.

The solution of the equationddtc=Bcis role="math" localid="1668581649314" ct=e-2tc1e10tc2.

Substitute the valuerole="math" localid="1668581869674" width="77" height="63">e-2tc1e10tc2for ctandrole="math" localid="1668581850330" width="61" height="47">11-22for S in the equation x=Scas follows.

role="math" localid="1668582393345" xt=Scxt=11-22e-2tc1e10tc2xt=c1e-2t+e10tc2-2e-2tc1+2e10tc2

Substitute the value 0 for t in the equationxt=c1e-2t+e10tc2-2e-2tc1+2e10tc2as follows.

role="math" localid="1668582630380" xt=c1e-2t+e10tc2-2e-2tc1+2e10tc2x0=c1e-20+e100c2-2e-20c1+2e100c2x0=c1+c2-2c1+2c2

As x0=11, substitute the value 11for x0in the equation x0=c1+c2-2c1+2c2as follows.

role="math" localid="1668582748528" width="149" height="120">x0=c1+c2-2c1+2c211=c1+c2-2c1+2c2

04

Find the values of c1,c2

Compare the equation both side in the equation11=c1+c2-2c1+2c2as follows.

1=c1+c21=-2c1+2c2

Subtract the equation2=2c1+c2from1=-2c1+2c2as follows.

2-1=2c1+c2--2c1+2c21=4c1c1=0.25

Substitute the value 0.25 for c1 in the equation1=c1+c2as follows.

1=c1+c21=0.25+c2c2=0.75

Therefore, the value ofc1,c2arec1=0.25and c2=0.75.

05

Determine the general solution for x→(t)

The general solution ofxtis xt=c1e-2tv1+c2e10tv2.

Substitute the value1-2for v1 and12for v2 in the equationxt=c1e-2tv1+c2e4tv2as follows.

role="math" localid="1668583249388" xt=c1e-2tv1+c2e10tv2xt=c1e-2t1-2+c2e10t12

Substitute the values 0.25 for c1 and 0.75 for c2 in the equationxt=c1e-2t1-2+c2e10t12as follows.

xt=c1e-2t1-2+c2e10t12xt=0.25e-2t1-2+0.75e10t12

Hence the solution of the systemdxdt=4348xwith the initial valuex0=11is xt=c1e-2t1-2+c2e10t12.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free