Chapter 9: Q47E (page 442)
Consider the IVP withwhere A is an upper triangularmatrix with m distinct diagonal entries . See the examples in Exercise 45 and 46.
(a) Show that this problem has a unique solutionwhose componentsare of the form
,
for some polynomials .Hint: Find first , then , and so on.
(b) Show that the zero state is a stable equilibrium solution of this system if (and only if) the real part of all the is negative.
Short Answer
(a) The solution is
(b)The systemis stable.