Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the product rule for derivatives of complex valued function.

Short Answer

Expert verified

The solution is ddt(z1z2)=z2ddt(z1)+z1ddt(z2).

Step by step solution

01

Simplify the complex function z1(t)z2(t). 

Consider the complex valued functionsz1(t)andz2(t)wherez1(t)=x1(t)+iy1(t)andz2(t)=x2(t)+iy2(t).

Multiply the equations z1(t)=x1(t)+iy1(t)andz2(t)=x2(t)+iy2(t) as follows.

z1(t)z2(t)={x1(t)+iy1(t)}{x2(t)+iy2(t)}z1(t)z2(t)=x1(t)x2(t)y1(t)y2(t)+i{x1(t)y2(t)+x2(t)y1(t)}

02

Determine the value of z2(t)dz1(t)dt+z1(t)dz2(t)dt . 

Differentiate the equationz1(t)=x1(t)+iy1(t) both side with respect to tas follows.

z1(t)=x1(t)+iy1(t)dz1(t)dt=dx1(t)dt+idy1(t)dt

Differentiate the equation z2(t)=x2(t)+iy2(t)both side with respect t to as follows.

z2(t)=x2(t)+iy2(t)dz2(t)dt=dx2(t)dt+idy2(t)dt

Substitute the values x1(t)+iy1(t)forz1(t) ,dx1(t)dt+idy1(t)dt for dz1(t)dt, x2(t)+iy2(t)forz2(t) anddx2(t)dt+idy2(t)dt fordz2(t)dt in z2(t)ddt(z1(t))+z1(t)ddt(z2(t))as follows.

z2(t)ddt(z1(t))+z1(t)ddt(z2(t))=[{x2(t)+iy2(t)}{dx1(t)dt+idy1(t)dt}+{x1(t)+iy1(t)}{dx2(t)dt+idy2(t)dt}]z2(t)ddt(z1(t))+z1(t)ddt(z2(t))=[{x2(t)dx1(t)dt+ix2(t)dy1(t)dt+iy2(t)dx1(t)dty2(t)dy1(t)dt}+{x1(t)dx2(t)dt+ix1(t)dy2(t)dt+iy1(t)dx2(t)dty1(t)dy2(t)dt}]z2(t)ddt(z1(t))+z1(t)ddt(z2(t))=[{x2(t)dx1(t)dty2(t)dy1(t)dt+i{x2(t)dy1(t)dt+y2(t)dx1(t)dt}}+{x1(t)dx2(t)dty1(t)dy2(t)dt+i{x1(t)dy2(t)dt+y1(t)dx2(t)dt}}]z2(t)ddt(z1(t))+z1(t)ddt(z2(t))=[{x2(t)dx1(t)dty2(t)dy1(t)dtx1(t)dx2(t)dty1(t)dy2(t)dt}+i{x2(t)dy1(t)dt+y2(t)dx1(t)dt+x1(t)dy2(t)dt+y1(t)dx2(t)dt}]

Therefore, the value of z2(t)ddt(z1(t))+z1(t)ddt(z2(t))is [{x2(t)dx1(t)dty2(t)dy1(t)dtx1(t)dx2(t)dty1(t)dy2(t)dt}+i{x2(t)dy1(t)dt+y2(t)dx1(t)dt+x1(t)dy2(t)dt+y1(t)dx2(t)dt}].

03

Determine the value of  ddt{z1(t)z2(t)}

Differentiate the equationz1(t)z2(t)=x1(t)x2(t)y1(t)y2(t)+i{x1(t)y2(t)+x2(t)y1(t)} both side with respect to tas follows.

z1(t)z2(t)=x1(t)x2(t)y1(t)y2(t)+i{x1(t)y2(t)+x2(t)y1(t)}ddt{z1(t)z2(t)}=ddt{x1(t)x2(t)y1(t)y2(t)+i{x1(t)y2(t)+x2(t)y1(t)}}ddt{z1(t)z2(t)}=[x1(t)ddtx2(t)+x2(t)ddtx1(t)y1(t)ddty2(t)y2(t)ddty1(t)+i{x1(t)ddty2(t)+y2(t)ddtx1(t)+y1(t)ddtx2(t)+x2(t)ddty1(t)}]

04

Show that ddt{z1(t)z2(t)}=z2(t)ddt{z1(t)}+z1(t)ddt{z2(t)}.

As ddt{z1(t)z2(t)}=[x1(t)ddtx2(t)+x2(t)ddtx1(t)y1(t)ddty2(t)y2(t)ddty1(t)+i{x1(t)ddty2(t)+y2(t)ddtx1(t)+y1(t)ddtx2(t)+x2(t)ddty1(t)}], substitute the values z2(t)ddt(z1(t))+z1(t)ddt(z2(t))for [x1(t)ddtx2(t)+x2(t)ddtx1(t)y1(t)ddty2(t)y2(t)ddty1(t)+i{x1(t)ddty2(t)+y2(t)ddtx1(t)+y1(t)ddtx2(t)+x2(t)ddty1(t)}]in the equation ddt{z1(t)z2(t)}=[x1(t)ddtx2(t)+x2(t)ddtx1(t)y1(t)ddty2(t)y2(t)ddty1(t)+i{x1(t)ddty2(t)+y2(t)ddtx1(t)+y1(t)ddtx2(t)+x2(t)ddty1(t)}]as follows.

ddt{z1(t)z2(t)}=[x1(t)ddtx2(t)+x2(t)ddtx1(t)y1(t)ddty2(t)y2(t)ddty1(t)+i{x1(t)ddty2(t)+y2(t)ddtx1(t)+y1(t)ddtx2(t)+x2(t)ddty1(t)}]=z2(t)ddt(z1(t))+z1(t)ddt(z2(t))ddt{z1(t)z2(t)}=z2(t)ddt(z1(t))+z1(t)ddt(z2(t))

Hence, the product rule for derivative formula for the complex valued function is derived

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use the concept of a continuous dynamical system.Solve the differential equation dxdt=kx. Solvethe system dxdt=Axwhen Ais diagonalizable overR,and sketch the phase portrait for 2×2 matricesA.

Solve the initial value problems posed in Exercises 1through 5. Graph the solution.

2. dxdt=-0.71xwith x(0)=-e.

If T is an n-thorder linear differential operator andλ is an arbitrary scalar, isλ necessarily an eigenvalue of T? If so, what is the dimension of the eigenspace associated with λ?

Solve the nonlinear differential equations in Exercises 6through 11 using the method of separation of variables:Write the differential equation dxdt=fxas dxfx=dtand integrate both sides.

10.dxdt=1+x2,x(0)=0

Determine the stability of the systemdxdt=(000001-1-1-2)x

feedback Loops:Suppose some quantitieskix1(t),x2(t),...,xn(t)can be modelled by differential equations of the form localid="1662090443855">|\begingathereddx1dt=-k1x-bxn\hfilldx2dt=x1-k2\hfill.\hfill.\hfilldxndt=xn-1-knxn\hfill\endgathered|

Where b is positive and the localid="1662090454144">ki are positive.(The matrix of this system has negative numbers on the diagonal, localid="1662090460105" 1's directly below the diagonal and a negative number in the top right corner)We say that the quantities localid="1662090470062">x1,x2,...,xndescribe a (linear) negative feedback loop

  1. Describe the significance of the entries in this system inpractical terms.
  2. Is a negative feedback loop with two componentslocalid="1662090478095">(n=2) necessarily stable?
  3. Is a negative feedback loop with three components necessarily stable?
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free