Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let Abe ann×nmatrix andK a scalar. Consider the following two systems:

dxdt=Ax(I)dcdt=kAc(II)

Show that ifx(t)is a solution of the system(I)thenc(t)=x(kt)is a solution of the system(II). Compare the vector field of the two system.

Short Answer

Expert verified

Yes, ct=xktis a solution of the systemdcdt=kAc

Step by step solution

01

Determine the equation of the solution

Consider xtandctis a solution of the system dxdt=Axanddcdt=kAcrespectively.

Assume λ1,λ2,λ3,...,λnbe the Eigen values of the matrix A then there exist Eigen vectors v1,v2,v3,...,vnsuch that xt=c1eλ1tv1+c2eλ2tv2+...+cneλntvnand ct=c1ekλ1tv1+c2ekλ2tv2+...+cnekλntvnwhere c1,c2,...,cnis constant.

If xtis the solution of the linear system dxdt=Ax then xt=c1eλ1tv1+c2eλ2tv2+...+cneλntvnwhere λ1,λ2,λ3,...,λnbe the Eigen values and v1,v2,v3,...,vnof n×nmatrix A.

02

Show that c→t=ektx→t is a solution of the system 

Simplify the equation ct=c1ekλ1tv1+c2ekλ2tv2+...+cnekλntvnas follows.

ct=c1ekλ1tv1+c2ekλ2tv2+...+cnekλntvnct=c1eλ1ktv1+c2eλ2ktv2+...+cneλnktvn

As xt=c1eλ1tv1+c2eλ2tv2+...+cneλntvn, substitute the value ktfor t in the equation xt=c1eλ1tv1+c2eλ2tv2+...+cneλntvnas follows.

xt=c1eλ1tv1+c2eλ2tv2+...+cneλntvnxkt=c1eλ1ktv1+c2eλ2ktv2+...+cneλnktvn

Substitute the value xktforc1eλ1ktv1+c2eλ2ktv2+...+cneλnktvnin the equation ct=c1eλ1ktv1+c2eλ2ktv2+...+cneλnktvnas follows.

localid="1659535938530" ct=c1eλ1ktv1+c2eλ2ktv2+...+cneλnktvnct=xkt

Hence, if xtandctis a solution of the systemdxdt=Axand dcdt=kAcrespectively thenct=xkt is a solution

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free