Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a2×2matrixAwith eigenvalues±πi. Let v+iwbe an eigenvector of A with eigenvalue . Solve the initial value problem dxdt=Axwithx0=w.

Draw the solution in the accompanying figure. Mark the vectorsx(0),x(12),x(1),andx(2).

Short Answer

Expert verified

The solution isx(1)=-w,x(2)=w,x(12)=v,x(0)=w. The vectors are x(0),x(12),x(1)and x(2).

Step by step solution

01

Definition of the theorem

Continuous dynamical system with eigenvaluesp±iq

Consider the linear systemdxdt=AxwhereAis a real2×2matrix with complex eigenvaluesp±iq(andq0).

Consider an eigenvectorv+iwwith eigenvaluep±iq.

Thenx(t)=eptS[cos(qt)-sin(qt)sin(qt)cos(qt)]S-1x0whereS=[wv]. Recall thatS-1x0is the coordinate vector ofx0with respect to basisw,v.

02

Explanation of the solution

Consider a2×2matrixAwith eigenvalues±πi. Letv+iwbe an eigenvector ofAwith eigenvalueπi.

Now, consider the system as follows.

dxdt=Axwith the initial conditionx0=w.

IfAhas eigenvaluep±iq(q0)andv+iwis the eigenvector ofp±iq, then the solution as follows.

x(t)=eptS[cos(qt)-sin(qt)sin(qt)cos(qt)]S-1x0x(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1w

Substitute the value0fortinx(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1was follows.

x(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1wx(0)=[wv][cos(π(0))-sin(π(0))sin(π(0))cos(π(0))][wv]-1wx(0)=[wv][cos(0)-sin(0)sin(0)cos(0)][wv]-1w=[wv][1001][wv]-1w

Simplify further as follows.

x(0)=[w1v1w2v2][1001][wv  ]-1w=[w1v1w2v2][1001]1w1v2-w2v1[v2-v1-w2w1][w1w2]=1w1v2-w2v1[w1v1w2v2][v2w1-v1w2-w2w1+w1w2]x(0)=v2w1-v1w2w1v2-w2v1[w1v1w2v2][10]

Simplify further as follows.

x(0)=[w1v1w2v2][10]x(0)=[w1w2]x(0)=w

x(0)=[w1v1w2v2][10]x(0)=[w1w2]x(0)=w

Substitute the value12fortinx(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1was follows.

x(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1wx(12)=[wv][cos(π(12))-sin(π(12))sin(π(12))cos(π(12))][wv]-1wx(12)=[wv][cos(π2)-sin(π2)sin(π2)cos(π2)][wv]-1w=[wv][0-110][wv]-1w

Simplify further as follows.

x(12)=[w1v1w2v2][0-110][wv  ]-1w=[w1v1w2v2][0-110][w1v1w2v2]-1[w1w2]=[v1-w1v2-w2]1w1v2-w2v1[v2-v1-w2w1][w1w2]x(12)=1w1v2-w2v1[v1-w1v2-w2][v2w1-v1w2-w2w1+w1w2]

Simplify further as follows.

x(12)=1w1v2-w2v1[v1-w1v2-w2][v2w1-v1w20]x(12)=v2w1-v1w2w1v2-w2v1[v1-w1v2-w2][10]x(12)=[v1-w1v2-w2][10]x(12)=[v1v2]

Simplify further as follows.

x(12)=v

03

Simplification of the solution

Substitute the value1fortinx(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1was follows.

x(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1wx(1)=[wv][cos(π(1))-sin(π(1))sin(π(1))cos(π(1))][wv]-1wx(1)=[wv][cos(π)-sin(π)sin(π)cos(π)][wv]-1w=[wv][-1001][wv]-1w

Simplify further as follows.

x(1)=[w1v1w2v2][-100-1][wv  ]-1w=[w1v1w2v2][-100-1]1w1v2-w2v1[v2-v1-w2w1][w1w2]=1w1v2-w2v1[-w1-v1-w2-v2][v2w1-v1w2-w2w1+w1w2]x(1)=v2w1-v1w2w1v2-w2v1[-w1-v1-w2-v2][10]

Simplify further as follows.

x(1)=[-w1-v1-w2-v2][10]x(1)=[-w1-w2]x(1)=-w

Substitute the value2fortinx(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1was follows.

x(t)=[wv][cos(πt)-sin(πt)sin(πt)cos(πt)]S-1wx(2)=[wv][cos(π(2))-sin(π(2))sin(π(2))cos(π(2))][wv]-1wx(2)=[wv][cos(2π)-sin(2π)sin(2π)cos(2π)][wv]-1w=[wv][1001][wv]-1w

Simplify further as follows.

x(2)=[w1v1w2v2][1001][wv  ]-1w=[w1v1w2v2][1001]1w1v2-w2v1[v2-v1-w2w1][w1w2]=1w1v2-w2v1[w1v1w2v2][v2w1-v1w2-w2w1+w1w2]x(2)=v2w1-v1w2w1v2-w2v1[w1v1w2v2][10]

Simplify further as follows.

x(2)=[w1v1w2v2][10]x(2)=[w1w2]x(2)=w

04

Diagram representation of the solution

The vectors x(0),x(12),x(1)and x(2)is pointed in the figure 1 as follows.

Thus, the vectors x(0),x(12),x(1)andx(2)are shown in figure 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free