Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7-10, let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},{{\mathop{\rm b}\nolimits} _2}} \right\}\) and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},{{\mathop{\rm c}\nolimits} _2}} \right\}\) be bases for \({\mathbb{R}^2}\). In each exercise, find the change-of-coordinates matrix from \(B\) to \(C\) and the change-of-coordinates matrix from \(C\) to \(B\).

9. \({{\mathop{\rm b}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}{ - 6}\\{ - 1}\end{array}} \right),{{\mathop{\rm b}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}2\\0\end{array}} \right),{{\mathop{\rm c}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}2\\{ - 1}\end{array}} \right),{{\mathop{\rm c}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}6\\{ - 2}\end{array}} \right)\).

Short Answer

Expert verified

The change-of-coordinates matrix from \(B\) to \(C\) is \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}9&{ - 2}\\{ - 4}&1\end{array}} \right)\). The change-of-coordinates matrix from \(C\) to \(B\) is \(\mathop P\limits_{B \leftarrow C} = \left( {\begin{array}{*{20}{c}}1&2\\4&9\end{array}} \right)\).

Step by step solution

01

Change-of-coordinate matrix

Let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\) and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},...,{{\mathop{\rm c}\nolimits} _n}} \right\}\) be bases of a vector space \(V\). Then, according toTheorem 15,there is a unique \(n \times n\) matrix \(\mathop P\limits_{C \leftarrow B} \) such that

\({\left( {\mathop{\rm x}\nolimits} \right)_C} = \mathop P\limits_{C \leftarrow B} {\left( {\mathop{\rm x}\nolimits} \right)_B}\). …(1)

The columns of \(\mathop P\limits_{C \leftarrow B} \) are the \(C - \)coordinate vectors of the vectors in the ba\(\frac{1}{2}\)sis \(B\). That is, \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}{{{\left( {{{\mathop{\rm b}\nolimits} _1}} \right)}_C}}&{{{\left( {{{\mathop{\rm b}\nolimits} _2}} \right)}_C}}& \cdots &{{{\left( {{{\mathop{\rm b}\nolimits} _n}} \right)}_C}}\end{array}} \right)\).

02

Determine the change-of-coordinates from \(B\) to \(C\)

Write the augmented matrix as shown below:

Perform an elementary row operation to produce a row-reduced echelon form of the matrix.

At row 1, multiply row 1 by .

\( \sim \left( {\begin{array}{*{20}{c}}1&3&{ - 3}&1\\0&{ - 3}&{12}&{ - 9}\end{array}} \right)\)

At row 2, add rows 2 and 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&3&{ - 3}&1\\0&1&{ - 4}&1\end{array}} \right)\)

At row 1, multiply row 2 by 3 and subtract it from row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&9&{ - 2}\\0&1&{ - 4}&1\end{array}} \right)\)

Therefore, \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}9&{ - 2}\\{ - 4}&1\end{array}} \right)\).

Thus, the change-of-coordinates matrix from \(B\) to \(C\) is \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}9&{ - 2}\\{ - 4}&1\end{array}} \right)\).

03

Determine the change-of-coordinates from \(C\) to \(B\)

It is known that \({\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}}\) is the matrix that converts \(C - \)coordinates into \(B - \)coordinates. That is, \({\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}} = \mathop P\limits_{B \leftarrow C} \).

\(\begin{aligned} \mathop P\limits_{B \leftarrow C} &= {\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}}\\ &= {\left( {\begin{array}{*{20}{c}}9&{ - 2}\\{ - 4}&1\end{array}} \right)^{ - 1}}\\ &= \frac{1}{1}\left( {\begin{array}{*{20}{c}}1&2\\4&9\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}1&2\\4&9\end{array}} \right)\end{aligned}\)

Thus, the change-of-coordinates matrix from \(C\) to \(B\) is \(\mathop P\limits_{B \leftarrow C} = \left( {\begin{array}{*{20}{c}}1&2\\4&9\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use Exercise 28 to explain why the equation\(Ax = b\)has a solution for all\({\rm{b}}\)in\({\mathbb{R}^m}\)if and only if the equation\({A^T}x = 0\)has only the trivial solution.

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).

Suppose \({{\bf{p}}_{\bf{1}}}\), \({{\bf{p}}_{\bf{2}}}\), \({{\bf{p}}_{\bf{3}}}\), and \({{\bf{p}}_{\bf{4}}}\) are specific polynomials that span a two-dimensional subspace H of \({P_{\bf{5}}}\). Describe how one can find a basis for H by examining the four polynomials and making almost no computations.

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).

(Hint: Write \(A + B\) as the product of two partitioned matrices.)

Let \(A\) be an \(m \times n\) matrix of rank \(r > 0\) and let \(U\) be an echelon form of \(A\). Explain why there exists an invertible matrix \(E\) such that \(A = EU\), and use this factorization to write \(A\) as the sum of \(r\) rank 1 matrices. [Hint: See Theorem 10 in Section 2.4.]

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free