Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let H be an n-dimensional subspace of an n-dimensional vector space V. Explain why \(H = V\).

Short Answer

Expert verified

H is a subspace of V, and B is also in V. As B is a linearly independent set in V, B must also be a basis for V.

Step by step solution

01

Find the dimension of H and V

The bases of H and V have exactly n vectors because H is an n-dimensional subspace of V.

For \(n = 0\),

\(H = V = \left\{ 0 \right\}\).

02

Check for \(H = V\)

For subspace H is n-dimensional subspace, there is a B for H. Bmust have n elements and be linearly independent.

Since H is a subspace of V and B is also in V, B is a linearly independent set in V. So, B must also be a basis for V. Hence, Hand V are the same.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)

  1. Explain why \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of \(B\).
  2. Find a set of vectors that spans \({\mathop{\rm Nul}\nolimits} A\).
  3. Let \(T:{\mathbb{R}^5} \to {\mathbb{R}^4}\) be defined by \(T\left( x \right) = A{\mathop{\rm x}\nolimits} \). Explain why \(T\) is neither one-to-one nor onto.

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

  1. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} A\). (Hint: Explain why every vector in the column space of \(AB\) is in the column space of \(A\).
  2. Show that if \(B\) is \(n \times p\), then rank\(AB \le {\mathop{\rm rank}\nolimits} B\). (Hint: Use part (a) to study rank\({\left( {AB} \right)^T}\).)

In Exercises 27-30, use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.

\({\left( {{\bf{2}} - t} \right)^{\bf{3}}}\), \({\left( {{\bf{3}} - t} \right)^2}\), \({\bf{1}} + {\bf{6}}t - {\bf{5}}{t^{\bf{2}}} + {t^{\bf{3}}}\)

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

16. If \(A\) is an \(m \times n\) matrix of rank\(r\), then a rank factorization of \(A\) is an equation of the form \(A = CR\), where \(C\) is an \(m \times r\) matrix of rank\(r\) and \(R\) is an \(r \times n\) matrix of rank \(r\). Such a factorization always exists (Exercise 38 in Section 4.6). Given any two \(m \times n\) matrices \(A\) and \(B\), use rank factorizations of \(A\) and \(B\) to prove that rank\(\left( {A + B} \right) \le {\mathop{\rm rank}\nolimits} A + {\mathop{\rm rank}\nolimits} B\).

(Hint: Write \(A + B\) as the product of two partitioned matrices.)

A scientist solves a nonhomogeneous system of ten linear equations in twelve unknowns and finds that three of the unknowns are free variables. Can the scientist be certain that, if the right sides of the equations are changed, the new nonhomogeneous system will have a solution? Discuss.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free