Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 5-8, find the coordinate vector \({\left[ {\mathop{\rm x}\nolimits} \right]_B}\) of \({\mathop{\rm x}\nolimits} \) relative to the given basis \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\).

8. \({{\mathop{\rm b}\nolimits} _1} = \left[ {\begin{array}{*{20}{c}}1\\0\\3\end{array}} \right],{{\mathop{\rm b}\nolimits} _2} = \left[ {\begin{array}{*{20}{c}}2\\1\\8\end{array}} \right],{{\mathop{\rm b}\nolimits} _3} = \left[ {\begin{array}{*{20}{c}}1\\{ - 1}\\2\end{array}} \right],{\mathop{\rm x}\nolimits} = \left[ {\begin{array}{*{20}{c}}3\\{ - 5}\\4\end{array}} \right]\)

Short Answer

Expert verified

The coordinate vector \({\left[ {\mathop{\rm x}\nolimits} \right]_B}\) of x relative to the given basis is \({\left[ {\mathop{\rm x}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\5\end{array}} \right]\).

Step by step solution

01

Define the coordinate vector of x

Suppose \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\) is a basis for \(V\) and x is in \(V\). Thecoordinatesof \({\mathop{\rm x}\nolimits} \) relative to basis \(B\) (or the \(B\)-coordinates of x) are the weights \({c_1},...,{c_n}\), such that \({\mathop{\rm x}\nolimits} = {c_1}{b_1} + ... + {c_n}{b_n}\).

02

Write an augmented matrix

Consider the augmented matrix shown below.

\(\left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm b}\nolimits} _1}}&{{{\mathop{\rm b}\nolimits} _2}}&{{{\mathop{\rm b}\nolimits} _3}}&{\mathop{\rm x}\nolimits} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}}1&2&1&3\\0&1&{ - 1}&{ - 5}\\3&8&2&4\end{array}} \right]\)

03

Apply the row operation

At row 3, multiply row 1 by 3 and subtract it from row 3. At row 1, multiply row 2 by 2 and subtract it from row 1.

\[ \sim \left[ {\begin{array}{*{20}{c}}1&0&3&{13}\\0&1&{ - 1}&{ - 5}\\0&2&{ - 1}&{ - 5}\end{array}} \right]\]

At row 3, multiply row 2 by 2 and subtract it from row 3.

\[ \sim \left[ {\begin{array}{*{20}{c}}1&0&3&{13}\\0&1&{ - 1}&{ - 5}\\0&0&1&5\end{array}} \right]\]

At row 1, multiply row 3 by 3 and subtract it from row 1. At row 2, multiply row 2 by 1 and add it to row 3.

\[ \sim \left[ {\begin{array}{*{20}{c}}1&0&0&{ - 2}\\0&1&0&0\\0&0&1&5\end{array}} \right]\]

04

Determine the coordinate vector \({\left[ {\mathop{\rm x}\nolimits}  \right]_B}\) of \({\mathop{\rm x}\nolimits} \)

The solution of matrix A is \({c_1} = - 2,{c_2} = 0,{c_3} = 5\).

The coordinates vector \({\left[ {\mathop{\rm x}\nolimits} \right]_B}\) of \({\mathop{\rm x}\nolimits} \) relative to the given basis is shown below:

\(\begin{array}{c}{\left[ {\mathop{\rm x}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\\{{c_3}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\5\end{array}} \right]\end{array}\)

Thus, the coordinates vector \({\left[ {\mathop{\rm x}\nolimits} \right]_B}\) of \({\mathop{\rm x}\nolimits} \) relative to the given basis is \({\left[ {\mathop{\rm x}\nolimits} \right]_B} = \left[ {\begin{array}{*{20}{c}}{ - 2}\\0\\5\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercise 5, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

5. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right)\)

Let \(A\) be an \(m \times n\) matrix of rank \(r > 0\) and let \(U\) be an echelon form of \(A\). Explain why there exists an invertible matrix \(E\) such that \(A = EU\), and use this factorization to write \(A\) as the sum of \(r\) rank 1 matrices. [Hint: See Theorem 10 in Section 2.4.]

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

22. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 1}&{ - 13}&{ - 12.2}&{ - 1.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

13. Show that if \(P\) is an invertible \(m \times m\) matrix, then rank\(PA\)=rank\(A\).(Hint: Apply Exercise12 to \(PA\) and \({P^{ - 1}}\left( {PA} \right)\).)

Suppose the solutions of a homogeneous system of five linear equations in six unknowns are all multiples of one nonzero solution. Will the system necessarily have a solution for every possible choice of constants on the right sides of the equations? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free