Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: In Exercises5-8, find the steady-state vector.

8. \(\left[ {\begin{array}{*{20}{c}}{.7}&{.2}&{.2}\\0&{.2}&{.4}\\{.3}&{.6}&{.4}\end{array}} \right]\)

Short Answer

Expert verified

The steady-state vector is \({\mathop{\rm q}\nolimits} = \left[ {\begin{array}{*{20}{c}}{.4}\\{.2}\\{.4}\end{array}} \right]\).

Step by step solution

01

Compute \(P - I\)

The equation \(P{\mathop{\rm x}\nolimits} = {\mathop{\rm x}\nolimits} \) can be solved by rewriting itas \(\left( {P - I} \right){\mathop{\rm x}\nolimits} = 0\).

Compute \(P - I\) as shown below:

\(\begin{array}{c}P - I = \left[ {\begin{array}{*{20}{c}}{.7}&{.2}&{.2}\\0&{.2}&{.4}\\{.3}&{.6}&{.4}\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{ - .3}&{.2}&{.2}\\0&{ - .8}&{.4}\\{.3}&{.6}&{ - .6}\end{array}} \right]\end{array}\)

02

Write the augmented matrix

Write the augmented matrix for the homogeneous system \(\left( {P - I} \right){\mathop{\rm x}\nolimits} = 0\)as shown below:

\(\left[ {\begin{array}{*{20}{c}}{ - .3}&{.2}&{.2}&0\\0&{ - .8}&{.4}&0\\{.3}&{.6}&{ - .6}&0\end{array}} \right]\)

Perform an elementary row operation to produce the row-reduced echelon form of the matrix.

At row 1, multiply row 1 by \( - \frac{1}{{0.3}}\).

\( \sim \left[ {\begin{array}{*{20}{c}}1&{ - 0.666}&{ - 0.666}&0\\0&{ - .8}&{.4}&0\\{.3}&{.6}&{ - .6}&0\end{array}} \right]\)

At row 3, multiply row 1 by 0.3 and subtract it from row 3.

\( \sim \left[ {\begin{array}{*{20}{c}}1&{ - 0.666}&{ - 0.666}&0\\0&{ - .8}&{.4}&0\\0&{0.8}&{ - 0.4}&0\end{array}} \right]\)

At row 2, multiply row 2 by \( - \frac{1}{{0.8}}\).

\( \sim \left[ {\begin{array}{*{20}{c}}1&{ - 0.666}&{ - 0.666}&0\\0&1&{ - \frac{1}{2}}&0\\0&{0.8}&{ - 0.4}&0\end{array}} \right]\)

At row 1, multiply row 2 by 0.666 and add it to row 1. At row 3, multiply row 2 by 0.8 and subtract it from row 3.

\( \sim \left[ {\begin{array}{*{20}{c}}1&0&{ - 1}&0\\0&1&{ - \frac{1}{2}}&0\\0&0&0&0\end{array}} \right]\)

03

Determine the steady-state vector

The general solution of the equation \(\left( {P - I} \right){\mathop{\rm x}\nolimits} = 0\)is shown below:

\(\begin{array}{c}{\mathop{\rm x}\nolimits} = \left[ {\begin{array}{*{20}{c}}{{{\mathop{\rm x}\nolimits} _1}}\\{{{\mathop{\rm x}\nolimits} _2}}\\{{{\mathop{\rm x}\nolimits} _3}}\end{array}} \right]\\ = {{\mathop{\rm x}\nolimits} _3}\left[ {\begin{array}{*{20}{c}}1\\{\frac{1}{2}}\\1\end{array}} \right]\end{array}\)

One solution is \(\left[ {\begin{array}{*{20}{c}}2\\1\\2\end{array}} \right]\). The sum of the entries of \(\left[ {\begin{array}{*{20}{c}}2\\1\\2\end{array}} \right]\) is 5.

Multiply \({\mathop{\rm x}\nolimits} \) by \(\frac{1}{5}\) to obtain the steady-state vector as shown below:

\(\begin{array}{c}{\mathop{\rm q}\nolimits} = \left[ {\begin{array}{*{20}{c}}{\frac{2}{5}}\\{\frac{1}{5}}\\{\frac{2}{5}}\end{array}} \right]\\ = \left[ {\begin{array}{*{20}{c}}{.4}\\{.2}\\{.4}\end{array}} \right]\end{array}\)

Thus, the steady-state vector is \({\mathop{\rm q}\nolimits} = \left[ {\begin{array}{*{20}{c}}{.4}\\{.2}\\{.4}\end{array}} \right]\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(B = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{4}}}\end{array}} \right),\,\left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{9}}\end{array}} \right)\,} \right\}\). Since the coordinate mapping determined by B is a linear transformation from \({\mathbb{R}^{\bf{2}}}\) into \({\mathbb{R}^{\bf{2}}}\), this mapping must be implemented by some \({\bf{2}} \times {\bf{2}}\) matrix A. Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)).

Use coordinate vector to test whether the following sets of poynomial span \({{\bf{P}}_{\bf{2}}}\). Justify your conclusions.

a. \({\bf{1}} - {\bf{3}}t + {\bf{5}}{t^{\bf{2}}}\), \( - {\bf{3}} + {\bf{5}}t - {\bf{7}}{t^{\bf{2}}}\), \( - {\bf{4}} + {\bf{5}}t - {\bf{6}}{t^{\bf{2}}}\), \({\bf{1}} - {t^{\bf{2}}}\)

b. \({\bf{5}}t + {t^{\bf{2}}}\), \({\bf{1}} - {\bf{8}}t - {\bf{2}}{t^{\bf{2}}}\), \( - {\bf{3}} + {\bf{4}}t + {\bf{2}}{t^{\bf{2}}}\), \({\bf{2}} - {\bf{3}}t\)

Suppose a \({\bf{4}} \times {\bf{7}}\) matrix A has four pivot columns. Is \({\bf{Col}}\,A = {\mathbb{R}^{\bf{4}}}\)? Is \({\bf{Nul}}\,A = {\mathbb{R}^{\bf{3}}}\)? Explain your answers.

In Exercise 18, Ais an \(m \times n\) matrix. Mark each statement True or False. Justify each answer.

18. a. If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.

b. Row operations preserve the linear dependence relations among the rows of A.

c. The dimension of the null space of A is the number of columns of A that are not pivot columns.

d. The row space of \({A^T}\) is the same as the column space of A.

e. If A and B are row equivalent, then their row spaces are the same.

In Exercise 5, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

5. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free