Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a \({\bf{4}} \times {\bf{7}}\) matrix A has four pivot columns. Is \({\bf{Col}}\,A = {\mathbb{R}^{\bf{4}}}\)? Is \({\bf{Nul}}\,A = {\mathbb{R}^{\bf{3}}}\)? Explain your answers.

Short Answer

Expert verified

\({\rm{Col}}\,A = {\mathbb{R}^4}\), \({\rm{Nul}}\,A \ne {\mathbb{R}^3}\)

Step by step solution

01

Check for Col A

Since A has fourpivot columns, \({\rm{Col}}\,A = {\mathbb{R}^4}\).

02

Check for Nul A

The dim Nul A =3, but Nul A is a subspace of \({\mathbb{R}^7}\). Therefore, \({\rm{Nul}}\,A \ne {\mathbb{R}^3}\),

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

[M] Let \(A = \left[ {\begin{array}{*{20}{c}}7&{ - 9}&{ - 4}&5&3&{ - 3}&{ - 7}\\{ - 4}&6&7&{ - 2}&{ - 6}&{ - 5}&5\\5&{ - 7}&{ - 6}&5&{ - 6}&2&8\\{ - 3}&5&8&{ - 1}&{ - 7}&{ - 4}&8\\6&{ - 8}&{ - 5}&4&4&9&3\end{array}} \right]\).

  1. Construct matrices \(C\) and \(N\) whose columns are bases for \({\mathop{\rm Col}\nolimits} A\) and \({\mathop{\rm Nul}\nolimits} A\), respectively, and construct a matrix \(R\) whose rows form a basis for Row\(A\).
  2. Construct a matrix \(M\) whose columns form a basis for \({\mathop{\rm Nul}\nolimits} {A^T}\), form the matrices \(S = \left[ {\begin{array}{*{20}{c}}{{R^T}}&N\end{array}} \right]\) and \(T = \left[ {\begin{array}{*{20}{c}}C&M\end{array}} \right]\), and explain why \(S\) and \(T\) should be square. Verify that both \(S\) and \(T\) are invertible.

In Exercise 5, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

5. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right)\)

In statistical theory, a common requirement is that a matrix be of full rank. That is, the rank should be as large as possible. Explain why an m n matrix with more rows than columns has full rank if and only if its columns are linearly independent.

Let \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}1\\2\end{array}} \right]\). Find \({\mathop{\rm v}\nolimits} \) in \({\mathbb{R}^3}\) such that \(\left[ {\begin{array}{*{20}{c}}1&{ - 3}&4\\2&{ - 6}&8\end{array}} \right] = {{\mathop{\rm uv}\nolimits} ^T}\) .

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free