Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 7-10, let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},{{\mathop{\rm b}\nolimits} _2}} \right\}\) and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},{{\mathop{\rm c}\nolimits} _2}} \right\}\) be bases for \({\mathbb{R}^2}\). In each exercise, find the change-of-coordinates matrix from \(B\) to \(C\) and the change-of-coordinates matrix from \(C\) to \(B\).

7. \({{\mathop{\rm b}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}7\\5\end{array}} \right),{{\mathop{\rm b}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}{ - 3}\\{ - 1}\end{array}} \right),{{\mathop{\rm c}\nolimits} _1} = \left( {\begin{array}{*{20}{c}}1\\{ - 5}\end{array}} \right),{{\mathop{\rm c}\nolimits} _2} = \left( {\begin{array}{*{20}{c}}{ - 2}\\2\end{array}} \right)\).

Short Answer

Expert verified

The change-of-coordinates matrix from \(B\) to \(C\) is \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 5}&2\end{array}} \right)\). The change-of-coordinates matrix from \(C\) to \(B\) is \(\mathop P\limits_{B \leftarrow C} = \left( {\begin{array}{*{20}{c}}{ - 2}&1\\{ - 5}&3\end{array}} \right)\).

Step by step solution

01

State the change-of-coordinate matrix

Let \(B = \left\{ {{{\mathop{\rm b}\nolimits} _1},...,{{\mathop{\rm b}\nolimits} _n}} \right\}\)and \(C = \left\{ {{{\mathop{\rm c}\nolimits} _1},...,{{\mathop{\rm c}\nolimits} _n}} \right\}\) be bases of a vector space \(V\). Then according toTheorem 15,there is a unique \(n \times n\) matrix \(\mathop P\limits_{C \leftarrow B} \) such that

\({\left( {\mathop{\rm x}\nolimits} \right)_C} = \mathop P\limits_{C \leftarrow B} {\left( {\mathop{\rm x}\nolimits} \right)_B}\). …(1)

The columns of \(\mathop P\limits_{C \leftarrow B} \) are the \(C - \)coordinate vectors of the vectors in the basis \(B\). That is, \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}{{{\left( {{{\mathop{\rm b}\nolimits} _1}} \right)}_C}}&{{{\left( {{{\mathop{\rm b}\nolimits} _2}} \right)}_C}}& \cdots &{{{\left( {{{\mathop{\rm b}\nolimits} _n}} \right)}_C}}\end{array}} \right)\).

02

Determine the change-of-coordinates from \(B\) to \(C\)

Write the augmented matrix as shown below:

Perform an elementary row operation to produce a row-reduced echelon form of the matrix.

At row 2, multiply row 1 by 5 and add it to row 2.

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 2}&7&{ - 3}\\0&{ - 8}&{40}&{ - 16}\end{array}} \right)\)

At row 2, multiply row 2 by \( - \frac{1}{8}\).

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 2}&7&{ - 3}\\0&1&{ - 5}&2\end{array}} \right)\)

At row 1, multiply row 2 by 2 and add it to row 1.

\( \sim \left( {\begin{array}{*{20}{c}}1&0&{ - 3}&1\\0&1&{ - 5}&2\end{array}} \right)\)

Therefore, \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 5}&2\end{array}} \right)\).

Thus, the change-of-coordinates matrix from \(B\) to \(C\) is \(\mathop P\limits_{C \leftarrow B} = \left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 5}&2\end{array}} \right)\).

03

Determine the change-of-coordinates from \(C\) to \(B\)

It is known that \({\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}}\) is the matrix that converts \(C - \)coordinates into \(B - \)coordinates. That is, \({\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}} = \mathop P\limits_{B \leftarrow C} \).

\(\begin{aligned} \mathop P\limits_{B \leftarrow C} &= {\left( {\mathop P\limits_{C \leftarrow B} } \right)^{ - 1}}\\ &= {\left( {\begin{array}{*{20}{c}}{ - 3}&1\\{ - 5}&2\end{array}} \right)^{ - 1}}\\ &= \frac{1}{{ - 1}}\left( {\begin{array}{*{20}{c}}2&{ - 1}\\5&{ - 3}\end{array}} \right)\\ &= \left( {\begin{array}{*{20}{c}}{ - 2}&1\\{ - 5}&3\end{array}} \right)\end{aligned}\)

Thus, the change-of-coordinates matrix from \(C\) to \(B\) is \(\mathop P\limits_{B \leftarrow C} = \left( {\begin{array}{*{20}{c}}{ - 2}&1\\{ - 5}&3\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free