Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercise 7, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).

7. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{1}}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{ - {\bf{3}}}\\{\bf{4}}\\{\bf{9}}\end{array}} \right),{b_{\bf{3}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{2}}}\\{\bf{4}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{\bf{8}}\\{ - {\bf{9}}}\\{\bf{6}}\end{array}} \right)\)

Short Answer

Expert verified

Coordinate vector \({\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 1}\\3\end{array}} \right)\)

Step by step solution

01

Write the system

Note that \({\left( x \right)_{\rm B}}\)be the solution of the system.

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{{b_1}}&{{b_2}}\end{array}} \right){\left( x \right)_{\rm B}} = x\\\left( {\begin{array}{*{20}{c}}1&{ - 3}&2\\{ - 1}&4&{ - 2}\\{ - 3}&9&4\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\\{{c_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}8\\{ - 9}\\6\end{array}} \right)\end{array}\)

02

Find the reduced row echelon form

Its augmented matrix is \(\left( {\begin{array}{*{20}{c}}{{b_1}}&{{b_2}}&x\end{array}} \right) = \left( {\begin{array}{*{20}{c}}1&{ - 3}&2&8\\{ - 1}&4&{ - 2}&{ - 9}\\{ - 3}&9&4&6\end{array}} \right)\).

At row 2, add row 1 to row 2, i.e., \({R_2} \to {R_2} + {R_1}\).

Also, at row 3, multiply row 1 by 3 and add it to row 3, i.e., \({R_3} \to {R_3} + 3{R_1}\).

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 3}&2&8\\0&1&0&{ - 1}\\0&0&{10}&{30}\end{array}} \right)\)

At row 3, divide row 3 by 10.

\( \sim \left( {\begin{array}{*{20}{c}}1&{ - 3}&2&8\\0&1&0&{ - 1}\\0&0&1&3\end{array}} \right)\)

At row 1, multiply row 2 by 3 and add it to row 1, i.e., \({R_1} \to {R_1} + 2{R_2}\).

\( \sim \left( {\begin{array}{*{20}{c}}1&0&2&5\\0&1&0&{ - 1}\\0&0&1&3\end{array}} \right)\)

At row 1, multiply row 3 by 2 and subtract it from row 1, i.e., \({R_1} \to {R_1} - 2{R_3}\).

\( \sim \left( {\begin{array}{*{20}{c}}1&0&0&{ - 1}\\0&1&0&{ - 1}\\0&0&1&3\end{array}} \right)\)

This implies \({c_1} = - 1,{c_2} = - 1,\) and \({c_3} = 3\).

03

Draw a conclusion

\(\begin{array}{c}{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{{c_1}}\\{{c_2}}\\{{c_3}}\end{array}} \right)\\ = \left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 1}\\3\end{array}} \right)\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)

  1. Explain why \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of \(B\).
  2. Find a set of vectors that spans \({\mathop{\rm Nul}\nolimits} A\).
  3. Let \(T:{\mathbb{R}^5} \to {\mathbb{R}^4}\) be defined by \(T\left( x \right) = A{\mathop{\rm x}\nolimits} \). Explain why \(T\) is neither one-to-one nor onto.

Is it possible that all solutions of a homogeneous system of ten linear equations in twelve variables are multiples of one fixed nonzero solution? Discuss.

Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).

14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)

Find a basis for the set of vectors in\({\mathbb{R}^{\bf{3}}}\)in the plane\(x + {\bf{2}}y + z = {\bf{0}}\). (Hint:Think of the equation as a โ€œsystemโ€ of homogeneous equations.)

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

22. (M) \(A = \left( {\begin{array}{*{20}{c}}0&1&0&0\\0&0&1&0\\0&0&0&1\\{ - 1}&{ - 13}&{ - 12.2}&{ - 1.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}1\\0\\0\\{ - 1}\end{array}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free