Chapter 4: Q6E (page 191)
If a\({\bf{6}} \times {\bf{3}}\)matrix A has a rank 3, find dim Nul A, dim Row A, and rank\({A^T}\).
Short Answer
0, 3, and 3
Chapter 4: Q6E (page 191)
If a\({\bf{6}} \times {\bf{3}}\)matrix A has a rank 3, find dim Nul A, dim Row A, and rank\({A^T}\).
0, 3, and 3
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercise 5, find the coordinate vector \({\left( x \right)_{\rm B}}\) of x relative to the given basis \({\rm B} = \left\{ {{b_{\bf{1}}},...,{b_n}} \right\}\).
5. \({b_{\bf{1}}} = \left( {\begin{array}{*{20}{c}}{\bf{1}}\\{ - {\bf{3}}}\end{array}} \right),{b_{\bf{2}}} = \left( {\begin{array}{*{20}{c}}{\bf{2}}\\{ - {\bf{5}}}\end{array}} \right),x = \left( {\begin{array}{*{20}{c}}{ - {\bf{2}}}\\{\bf{1}}\end{array}} \right)\)
Verify that rank \({{\mathop{\rm uv}\nolimits} ^T} \le 1\) if \({\mathop{\rm u}\nolimits} = \left[ {\begin{array}{*{20}{c}}2\\{ - 3}\\5\end{array}} \right]\) and \({\mathop{\rm v}\nolimits} = \left[ {\begin{array}{*{20}{c}}a\\b\\c\end{array}} \right]\).
Consider the following two systems of equations:
\(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 1\\4{x_1} + {x_2} - 6{x_3} = 9\end{array}\) \(\begin{array}{c}5{x_1} + {x_2} - 3{x_3} = 0\\ - 9{x_1} + 2{x_2} + 5{x_3} = 5\\4{x_1} + {x_2} - 6{x_3} = 45\end{array}\)
It can be shown that the first system of a solution. Use this fact and the theory from this section to explain why the second system must also have a solution. (Make no row operations.)
Question: Exercises 12-17 develop properties of rank that are sometimes needed in applications. Assume the matrix \(A\) is \(m \times n\).
14. Show that if \(Q\) is an invertible, then \({\mathop{\rm rank}\nolimits} AQ = {\mathop{\rm rank}\nolimits} A\). (Hint: Use Exercise 13 to study \({\mathop{\rm rank}\nolimits} {\left( {AQ} \right)^T}\).)
In Exercise 1, find the vector x determined by the given coordinate vector \({\left( x \right)_{\rm B}}\) and the given basis \({\rm B}\).
1. \({\rm B} = \left\{ {\left( {\begin{array}{*{20}{c}}{\bf{3}}\\{ - {\bf{5}}}\end{array}} \right),\left( {\begin{array}{*{20}{c}}{ - {\bf{4}}}\\{\bf{6}}\end{array}} \right)} \right\},{\left( x \right)_{\rm B}} = \left( {\begin{array}{*{20}{c}}{\bf{5}}\\{\bf{3}}\end{array}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.