Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the polynomials \({{\bf{p}}_{\bf{1}}}\left( t \right) = {\bf{1}} + t\), \({{\bf{p}}_{\bf{2}}}\left( t \right) = {\bf{1}} - t\), \({{\bf{p}}_{\bf{3}}}\left( t \right) = {\bf{4}}\), \({{\bf{p}}_{\bf{4}}}\left( t \right) = {\bf{1}} + {t^{\bf{2}}}\), and \({{\bf{p}}_{\bf{5}}}\left( t \right) = {\bf{1}} + {\bf{2}}t + {t^{\bf{2}}}\), and let H be the subspace of \({P_{\bf{5}}}\) spanned by the set \(S = \left\{ {{{\bf{p}}_{\bf{1}}},\,{{\bf{p}}_{\bf{2}}},\;{{\bf{p}}_{\bf{3}}},\,{{\bf{p}}_{\bf{4}}},\,{{\bf{p}}_{\bf{5}}}} \right\}\). Use the method described in the proof of the Spanning Set Theorem (Section 4.3) to produce a basis for H. (Explain how to select appropriate members of S.)

Short Answer

Expert verified

The basis of H is \(\left\{ {{{\bf{p}}_1},\;{{\bf{p}}_2},\,{{\bf{p}}_4}} \right\}\).

Step by step solution

01

Check for a combination of \({{\bf{p}}_{\bf{1}}}\) and \({{\bf{p}}_{\bf{2}}}\)

For a scalar \({c_1}\),

\(\begin{array}{c}{p_2} = {c_1}{p_1}\\1 - t = {c_1}\left( {1 + t} \right)\end{array}\).

The above equation is not true for any value of \({c_1}\). So, \({p_1}\) and \({p_2}\) are independent.

02

Check for a linear combination of \({{\bf{p}}_{\bf{3}}}\)

For scalars \({c_1}\) and \({c_2}\),

\(\begin{aligned}{c}{{\bf{p}}_3} &= {c_1}{{\bf{p}}_1} + {c_2}{{\bf{p}}_2}\\4 &= {c_1}\left( {1 + t} \right) + {c_2}\left( {1 - t} \right)\\ &= {c_1} + {c_2} + \left( {{c_1} - {c_2}} \right)t\end{aligned}\).

For the above equation, \({c_1} = 2\) and \({c_2} = 2\).

So, \({{\bf{p}}_3}\) can be obtained from \({{\bf{p}}_1}\) and \({{\bf{p}}_2}\).

03

Check for a linear combination of \({{\bf{p}}_{\bf{4}}}\)

For the scalars \({c_1}\), \({c_2}\), and \({c_3}\),

\(\begin{aligned} {{\bf{p}}_4} &= {c_1}{{\bf{p}}_1} + {c_2}{{\bf{p}}_2} + {c_3}{{\bf{p}}_3}\\t + {t^2} &= {c_1}\left( {1 + t} \right) + {c_2}\left( {1 - t} \right) + {c_3}\left( 4 \right)\\ &= {c_1} + {c_2} + 4{c_3} + \left( {{c_1} - {c_2}} \right)t\end{aligned}\).

As \({t^2}\) is not present in RHS, \({p_4}\) is an independent work.

04

Check for a linear combination of \({{\bf{p}}_{\bf{5}}}\)

For the scalars \({c_1}\), \({c_2}\), \({c_3}\), and \({c_4}\),

\(\begin{aligned}{c}{{\bf{p}}_5} &= {c_1}{{\bf{p}}_1} + {c_2}{{\bf{p}}_2} + {c_3}{{\bf{p}}_3} + {c_4}{{\bf{p}}_4}\\1 + 2t + {t^2} &= {c_1}\left( {1 + t} \right) + {c_2}\left( {1 - t} \right) + {c_3}\left( 4 \right) + {c_4}\left( {t + {t^2}} \right)\\ &= {c_1} + {c_2} + 4{c_3} + \left( {{c_1} - {c_2} + {c_4}} \right){t^2}\end{aligned}\).

For the above equation, \({c_1} = 1\), \({c_2} = 0\), \({c_3} = 0\), and \({c_4} = 1\).

So, \({p_5}\) is a dependent work.

The basis is formed by the independent vectors, so the basis of H is \(\left\{ {{{\bf{p}}_1},\;{{\bf{p}}_2},\,{{\bf{p}}_4}} \right\}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question 18: Suppose A is a \(4 \times 4\) matrix and B is a \(4 \times 2\) matrix, and let \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) represent a sequence of input vectors in \({\mathbb{R}^2}\).

  1. Set \({{\mathop{\rm x}\nolimits} _0} = 0\), compute \({{\mathop{\rm x}\nolimits} _1},...,{{\mathop{\rm x}\nolimits} _4}\) from equation (1), and write a formula for \({{\mathop{\rm x}\nolimits} _4}\) involving the controllability matrix \(M\) appearing in equation (2). (Note: The matrix \(M\) is constructed as a partitioned matrix. Its overall size here is \(4 \times 8\).)
  2. Suppose \(\left( {A,B} \right)\) is controllable and v is any vector in \({\mathbb{R}^4}\). Explain why there exists a control sequence \({{\mathop{\rm u}\nolimits} _0},...,{{\mathop{\rm u}\nolimits} _3}\) in \({\mathbb{R}^2}\) such that \({{\mathop{\rm x}\nolimits} _4} = {\mathop{\rm v}\nolimits} \).

Given \(T:V \to W\) as in Exercise 35, and given a subspace \(Z\) of \(W\), let \(U\) be the set of all \({\mathop{\rm x}\nolimits} \) in \(V\) such that \(T\left( {\mathop{\rm x}\nolimits} \right)\) is in \(Z\). Show that \(U\) is a subspace of \(V\).

(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)

  1. Explain why \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of \(B\).
  2. Find a set of vectors that spans \({\mathop{\rm Nul}\nolimits} A\).
  3. Let \(T:{\mathbb{R}^5} \to {\mathbb{R}^4}\) be defined by \(T\left( x \right) = A{\mathop{\rm x}\nolimits} \). Explain why \(T\) is neither one-to-one nor onto.

Let be a basis of\({\mathbb{R}^n}\). .Produce a description of an \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\)matrix A that implements the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\). Find it. (Hint: Multiplication by A should transform a vector x into its coordinate vector \({\left( {\bf{x}} \right)_B}\)). (See Exercise 21.)

(M) Show thatis a linearly independent set of functions defined on. Use the method of Exercise 37. (This result will be needed in Exercise 34 in Section 4.5.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free