Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the signals in Exercises 3-6 form a basis for the solution set of the accompanying difference equation.

\({{\bf{3}}^k}\), \(k{\left( { - {\bf{3}}} \right)^k}\) \({y_{k + {\bf{2}}}} + {\bf{6}}{y_{k + {\bf{1}}}} + {\bf{9}}{y_k} = {\bf{0}}\)

Short Answer

Expert verified

\({3^k}\) and \(k{\left( { - 3} \right)^k}\) form a basis of the solution set for the difference equation.

Step by step solution

01

Check for \({\left( { - {\bf{3}}} \right)^k}\)

Substitute \({y_k} = {\left( { - 3} \right)^k}\) in thedifference equation \({y_{k + 2}} + 6{y_{k + 1}} + 9{y_k} = 0\).

\(\begin{aligned} {y_{k + 2}} + 6{y_{k + 1}} + 9{y_k} &= {\left( { - 3} \right)^{k + 2}} + 6{\left( { - 3} \right)^{k + 1}} + 9{\left( { - 3} \right)^k}\\ &= {\left( { - 3} \right)^k}\left[ {{{\left( { - 3} \right)}^2} + 6\left( { - 3} \right) + 9} \right]\\ &= {\left( 3 \right)^k}\left[ {9 - 18 + 9} \right]\\ &= 0\end{aligned}\)

02

Check for \(k{\left( { - {\bf{3}}} \right)^k}\)

Substitute\({y_k} = k{\left( { - 3} \right)^k}\)in the difference equation\({y_{k + 2}} + 6{y_{k + 1}} + 9{y_k} = 0\).

\(\begin{aligned} {y_{k + 2}} + 6{y_{k + 1}} + 9{y_k} &= \left( {k + 2} \right){\left( { - 3} \right)^{k + 2}} + 6\left( {k + 1} \right){\left( { - 3} \right)^{k + 1}} + 9k{\left( { - 3} \right)^k}\\ &= {\left( { - 3} \right)^k}\left[ {\left( {k + 2} \right){{\left( { - 3} \right)}^2} + 6\left( {k + 1} \right)\left( { - 3} \right) + 9k} \right]\\ &= {\left( 3 \right)^k}\left[ {9k + 18 - 18k - 18 + 9k} \right]\\ &= 0\end{aligned}\)

Thus, for all\(k\),\({\left( { - 3} \right)^k}\)is in the solution set H.

03

Check whether the solution is the basis of the difference equation

For all k, in n-dimensional vector space, the dimension of H is 2. So, \({3^k}\) and \(k{\left( { - 3} \right)^k}\) forms a basis of the solution set for the difference equation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(M) Let \({{\mathop{\rm a}\nolimits} _1},...,{{\mathop{\rm a}\nolimits} _5}\) denote the columns of the matrix \(A\), where \(A = \left( {\begin{array}{*{20}{c}}5&1&2&2&0\\3&3&2&{ - 1}&{ - 12}\\8&4&4&{ - 5}&{12}\\2&1&1&0&{ - 2}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}{{{\mathop{\rm a}\nolimits} _1}}&{{{\mathop{\rm a}\nolimits} _2}}&{{{\mathop{\rm a}\nolimits} _4}}\end{array}} \right)\)

  1. Explain why \({{\mathop{\rm a}\nolimits} _3}\) and \({{\mathop{\rm a}\nolimits} _5}\) are in the column space of \(B\).
  2. Find a set of vectors that spans \({\mathop{\rm Nul}\nolimits} A\).
  3. Let \(T:{\mathbb{R}^5} \to {\mathbb{R}^4}\) be defined by \(T\left( x \right) = A{\mathop{\rm x}\nolimits} \). Explain why \(T\) is neither one-to-one nor onto.

Find a basis for the set of vectors in\({\mathbb{R}^{\bf{3}}}\)in the plane\(x + {\bf{2}}y + z = {\bf{0}}\). (Hint:Think of the equation as a “system” of homogeneous equations.)

Exercises 23-26 concern a vector space V, a basis \(B = \left\{ {{{\bf{b}}_{\bf{1}}},....,{{\bf{b}}_n}\,} \right\}\) and the coordinate mapping \({\bf{x}} \mapsto {\left( {\bf{x}} \right)_B}\).

Show that the coordinate mapping is onto \({\mathbb{R}^n}\). That is, given any y in \({\mathbb{R}^n}\), with entries \({y_{\bf{1}}}\),….,\({y_n}\), produce u in V such that \({\left( {\bf{u}} \right)_B} = y\).

If A is a \({\bf{6}} \times {\bf{4}}\) matrix, what is the smallest possible dimension of Null A?

Question: Determine if the matrix pairs in Exercises 19-22 are controllable.

19. \(A = \left( {\begin{array}{*{20}{c}}{.9}&1&0\\0&{ - .9}&0\\0&0&{.5}\end{array}} \right),B = \left( {\begin{array}{*{20}{c}}0\\1\\1\end{array}} \right)\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free